

APPLICATION LAYER PROCESSING WITH PROTOCOL INDEPENDENT
SWITCH ARCHITECTURE

YUSUF KÜRŞAT TUNCEL

FEBRUARY, 2021

Y
.K

. TU
N

CEL ÇA
N

K
A

Y
A

 U
N

IV
ERSITY

APPLICATION LAYER PROCESSING WITH PROTOCOL INDEPENDENT

SWITCH ARCHITECTURE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ÇANKAYA UNIVERSITY

BY

YUSUF KÜRŞAT TUNCEL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

FEBRUARY 2021

 iv

ABSTRACT

APPLICATION LAYER PROCESSING WITH PROTOCOL INDEPENDENT

SWITCH ARCHITECTURE

Tuncel, Yusuf Kürşat

M.Sc., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Roya CHOUPANI

Co-Supervisor : Assoc. Prof. Dr. Kasim ÖZTOPRAK

February 2021, 98 pages

This thesis investigates and proposes a solution for Protocol Independent Switch

Architecture in order to process application layer data, enabling the inspection and

processing of application content. Protocol Independent Switch Architecture (PISA)

is a novel approach in networking where the switch does not run any embedded binary

code for processing of network packets but rather an interpreted code written in a

domain-specific language. The main motivation behind this approach is that

telecommunication operators do not want to be locked in by a vendor for any type of

networking equipment, develop their own networking code in a hardware environment

that is not governed by a single equipment manufacturer. This approach also eases the

modeling of equipment in a simulation environment as all of the components of a

hardware switch run the same compatible code in a software modeled switch. The

novel techniques in this thesis exploit the main functions of a programmable switch

and combine the streaming data processor software to process application layer data

to create the desired effect from a telecommunication operator perspective to lower

down the costs, achieve desired performance and govern the network in a

comprehensive manner. The results indicate that the proposed solution using PISA

switches with a stream processor enables application visibility and control in an

 v

outstanding performance. The experimental study indicates that without any

optimization, the proposed solution increases the performance of application

identification and control systems from 5,5 up to 47 times.

Keywords: Software-Defined Networks, Protocol Independent Switch Architecture,

Programmable Switches, P4, Virtualization, Cloud-Native, Stream Processor, Deep

Packet Inspection

 vi

ÖZ

PROTOKOLDEN BAĞIMSIZ AĞ ANAHTAR MİMARİSİ İLE UYGULAMA

KATMANI İŞLEME

Tuncel, Yusuf Kürşat

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi : Dr. Öğretim Üyesi Roya CHOUPANI

Ortak Tez Yöneticisi : Doç. Dr. Kasım ÖZTOPRAK

Şubat 2021, 98 sayfa

Bu tez, uygulama katmanı verilerini işlemek ve bir uygulama içeriğinin incelenmesini

sağlamak için Protokolden Bağımsız Anahtar Mimarisi için bir çözüm araştırır ve bir

yöntem önerir. Protokolden Bağımsız Anahtar Mimarisi, ağ anahtarının herhangi bir

gömülü ikili kod çalıştırmadığı, bunun yerine amaca özel bir dilde yazılmış

yorumlanmış bir kod çalıştırdığı ağ iletişiminde yeni bir yaklaşımdır. Bu yaklaşımın

arkasındaki ana motivasyon, telekomünikasyon operatörlerinin herhangi bir ağ

ekipmanı türü için bir satıcıya kilitlenmek istememeleri, tek bir ekipman üreticisi

tarafından yönetilmeyen bir donanım ekosisteminde kendi ağ kodlarını

geliştirmeleridir. Bu yaklaşım aynı zamanda, bir donanım anahtarının tüm bileşenleri

yazılımla modellenen bir anahtarda aynı uyumlu kodu çalıştırdığı için bir ekipmanın

simülasyon ortamında modellemesini kolaylaştırır. Bu tezdeki yeni teknikler,

programlanabilir bir anahtarın ana işlevlerinden yararlanarak, maliyetleri düşürmek ve

ağı kapsamlı bir şekilde yönetmek için bir telekomünikasyon operatörü

perspektifinden istenen etkiyi yaratarak akışlı veri işlemci yazılımını ağ anahtarı

yazılımıyla birleştirmeyi amaçlamaktadır. Deneysel çalışma, herhangi bir

optimizasyon yapılmadan önerilen çözümün uygulama tanımlama sistemlerinin

performansını 5.5'ten 47 katına çıkardığını göstermektedir.

 vii

Anahtar Kelimeler: Yazılım Tanımlı Ağlar, Protokolden Bağımsız Anahtar

Mimarisi, Programlanabilir Anahtarlar, P4, Sanallaştırma, Bulutta Yerel, Akış

İşlemcisi, Derin Paket Denetimi

 viii

ACKNOWLEDGMENTS

I wish to express my deepest gratitude to my supervisors Assist. Prof. Dr. Roya

Choupani and Assoc. Prof. Dr. Kasım Öztoprak for their guidance, advice, criticism,

encouragement, and insight throughout the research. Your insightful motivational

comments encouraged me throughout this process.

My sincere acknowledgment also goes to my thesis committee members Prof. Dr.

Mehmet Reşit Tolun for his great contribution in proof reading of this thesis and Assist

Prof. Dr. Abdul Kadir Görür for their motivation as well as guidance.

This thesis would not be possible without the technology developed by A. Elbakyan.

I would like to thank Dr. İsmail Bütün for his careful review and helpful comments.

I also would also like to thank my wife and daughter for their support, understanding,

and motivation.

 ix

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM ... iii

ABSTRACT .. iv

ÖZ ... vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF TABLES ... xii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS ... xiv

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. Introduction .. 1

1.2. Thesis Contribution .. 5

1.3. Thesis Organization ... 7

CHAPTER 2 ... 8

BACKGROUND .. 8

2.1. Introduction .. 8

2.2. The Need for Change in the Telecommunication Sector 9

2.3. Evolution of Information Technologies and Related Environments 12

2.3.1. VMs, Containers, Dockers, and Kubernetes 13

 x

2.3.2. Cloud-Native, Edge Computing, and Microservices 17

2.3.3. Data Centers ... 17

2.4. Expectations of the Operators .. 18

2.5. The Results of the Changes in the Operators ... 20

2.6. The Impact of Automation ... 22

2.7. Zero-Touch Networking and Service Management 24

2.8. The Shift in Edge Computing .. 27

2.9. Next-Generation Security Services in Telecommunication Networks 29

2.10. Programmable Hardware ... 30

2.10.1. Protocol Independent Switch Architecture (PISA) 31

2.10.2. P4 Language ... 32

2.10.3. In-band Telemetry with Programmable Switches 34

2.11. Real-time Data Streaming .. 36

2.12. Deep Packet Inspection (DPI) and Application Layer Visibility 36

2.13. Future Directions and Challenges in Telecommunication Networks 37

CHAPTER 3 ... 42

APPLICATION LAYER PROCESSING WITH P4 SWITCHES 42

3.1. Introduction .. 42

3.2. Current State of the Art (SOTA) .. 43

3.2.1. Marple .. 43

3.2.2. SONATA .. 43

 xi

3.2.3. Packetscope .. 44

3.2.4. Deep Match .. 45

3.3. Proposed System Architecture ... 45

3.4. Simulation Environment .. 52

3.5. Example Use Case: Running DDoS Attack Simulation 54

CHAPTER 4 ... 59

EXPERIMENTAL STUDY ... 59

4.1. Experiment-1: Application Identification Performance Improvement DPI

Application Classification on Mixed flow captures ... 59

4.2. Sample Packet Captures ... 60

4.3. Experiment-2: TCP-based Application Identification 65

4.4. Experiment-3: Application Identification in full stream 67

4.5. Results and Discussion of the Experiments ... 69

CHAPTER 5 ... 71

CONCLUSIONS .. 71

5.1. Main Conclusions ... 71

5.2. Future Studies ... 72

REFERENCES ... 73

 xii

LIST OF TABLES

Table 1 Keywords used to search in Google Scholar and Microsoft Academic,

between 2016 and 2020 as of November 2020. ... 9

Table 2 Reduction of Packets based on Telemetry Levels .. 58

Table 3 Results for OpenVPN Traffic Reduction .. 61

Table 4 Rates for Test Captures ... 62

Table 5 Fully Detected Protocols from the capture files .. 62

Table 6 Rates for Real-life Captures Using only TCP Streams 65

Table 7 TCP-based reduction results ... 65

Table 8 TCP-based Detection Applications and Reduction Rates 67

Table 9 Rates for Real-life Captures Using Full Streams .. 67

Table 10 Application Identification in Full Stream ... 67

 xiii

LIST OF FIGURES

Figure 1: The Change in The Capacity Demand, Latency, and Services in the

Telecommunication World ... 10

Figure 2: Virtual Machines Compared with Containers .. 14

Figure 3: Four features of a Next Generation Telecommunication System 18

Figure 4: VM Architecture vs. Cloud-Native Functions .. 24

Figure 5: PISA Match-Action Table Processing Pipeline (Gupta et al., 2018) 31

Figure 6: P4 Architecture (Source: Adapted from [64]) ... 33

Figure 7: Pipeline execution in a P4-enabled switch (Hang et al., 2019) 34

Figure 8: In-band Network Telemetry ... 35

Figure 9: Mind map for the Transformation of the Networks 38

Figure 10: Proposed System Architecture .. 45

Figure 11: Simulation Environment ... 52

Figure 12: DDoS Attack Simulation Setup .. 54

Figure 13: Detected vs. Undetected Applications in Reduced Flow 64

 xiv

LIST OF ABBREVIATIONS

AI/ML Artificial Intelligence/Machine Learning

ASIC Application-Specific Integrated Circuit

ATM Asynchronous Transfer Mode

DPI Deep Packet Inspection

eNB E-UTRAN NodeB

ETSI European Telecommunications Standards Institute

HW Hardware

IP Internet Protocol

MEC Mobile Edge Computing

MPLS Multi-Protocol Label Switching

NFV Network Functions Virtualization

ONAP Open Network Automation Platform

OSM Open Service Management

PISA Protocol Independent Switch Architecture

RAN Radio Access Network

SDN Software-Defined Networks

SW Software

TCP Transmission Control Protocol

UDP User Datagram Protocol

ZSM Zero Touch Networking and Service Management

 1

CHAPTER 1

INTRODUCTION

1.1. Introduction

Rapid technology changes also affected operators in the telecommunication world. As

an artifact of this dramatic change, the operators face several issues which are not

limited to the following: i) Traffic is growing quick, ii) Capex and Opex tracking

traffic growth and not declining fast enough, and iii) Revenue is flat or declining. All

these changes threaten the viability of their business. Besides, they would not meet the

enormous increase in traffic demand with traditional networking infrastructures and

services.

During the last two decades, desktop and server virtualization has played an active role

in the Information Technology (IT) world. We are still in the middle of the

transformation, while all parties have experienced the effect of better resource

utilization and ease of usage. Similarly, when Openflow [1] was the first building

block of the Software-Defined Networking (SDN) enabling communication with

switches, most of the world was unaware of the birth of a revolution in the

telecommunication world. The proposed solution was revisiting the early telephony

networks with a clear separation of control and data planes. This is not surprising since

almost all significant revolutions (e.g., ATM, MPLS, and so on) in the

telecommunication world were revisiting original telephony networks' ideas to

 2

simplify network management with better service quality to optimize the costs in the

operations.

Contemporary to that progress, multiple government-funded projects started to

simulate large networks through server infrastructure. Because of these efforts,

controlling network devices is extended to controlling physical and hypervisor-based

virtual network devices. Successfully separating the control plane and data plane by

defining a communication protocol, the need for the intelligence aroused to perform

the network wise decisions and enforce the determined communication protocol to

harmonize the networking. This demand is met by introducing SDN controllers.

The enormous progress in clarifying the picture in the control plane sped up the data

plane's workings. The glue fulfilling the evolution in networking and SDN was the

network virtualization to adapt itself to existing heterogeneous hardware.

Contemporarily virtualization is considered, and Network Function Virtualization

(NFV) is introduced to utilize the specialized networking boxes. ETSI thinks that SDN

and NFV are complementary to each other [2]. NFV will allow the operators to replace

the appliances for network functions such as firewalls, load balancers, and customer

premises gateways by virtually delivering those services [3]. [4] is adding openness

(mainly open source) as the third pillar to SDN and NFV.

With the use of OpenFlow, SDN, and NFV, the network revolution has started.

However, it did not mean much to the telecommunication operators because of the

demands of their business. Something was missing in the picture to motivate them to

 3

use, or at least the gaining from the new solutions did not get massive interest from

them with their implementation of the services and architecture of their world. The

operator world was designed to have vertical SILOs with their management domains,

which is not practical since they would have tens of thousands of more devices than

they had in the past.

The operators' missing part in the transformation was the Policy Management and

Orchestration systems with the capabilities of delivering new services and allocating

resources dynamically upon the demand of the users and systems, and applying the

policies defined by the operator. The need for an umbrella to enable harmonization

between SILOs was evident by the operators. The operators realized the efforts of

having such solutions. They started a series of projects to fill the missing part of the

transformation in order to brighten the telecommunication world's future.

As stated previously, telecommunication world is in a great transformation. The most

important aspect of this transformation is to switch from old hardware-dependent,

vertical architectures to software-defined architecture. In this architecture, there are

series of improvements compared with the current products. Although the use of NFV

was a key improvement in data plane with improved flexibility, Protocol Independent

Switch Architecture (PISA) is one of the key elements with the accelerated

performance and intelligent processing ability in the data plane during this change.

The change in the architecture affects all stakeholders in a telecommunication operator

infrastructure including applications. Legacy Applications written for legacy hardware

are transformed into Software-defined architecture.

 4

Independent from the Software Defined Architectures, application identification and

control became critical in the last decade. It perched itself into the center of

cybersecurity, accounting, quality of service management and similar services. One of

the most important problems incurred by application identification is resource-hungry

behavior of itself. Next-Generation Firewalls (NGFW) and Deep Packet Inspection

(DPI) systems are two of the most popular usage area of application identification and

control. DPI, as the name implies, inspects every packet that is running through the

network deeply, and try to classify it under a human-readable name. It not only relies

on packets metadata and header but also packet payload, hence the name “Deep”.

While L4 (OSI Layer-4) provides valuable information about a packet, it cannot give

us any clue about the payload. In order to that, packets must be inspected by

maintaining the stateful information, and the payload must be constructed accordingly

so that it can be classified correctly. With the help of L4 information, network-side

security, such as stateful firewalls can be built. Similar to NGFWs processing packets

in L7, DPI still needs to inspect at L7. With the emergence of SDN architecture, DPI

vendors switched from hardware to software-based L7 DPIs. As they switch from

hardware-dependent architecture to SDN-based architecture, they lack the proper

scalability to match the actual line speed of the switches. While the capacities of the

data backbone increase, the systems depending on application identification became

the bottleneck of the infrastructure.

As explained before, the network applications become Virtual Network Functions

(VNF). Current software-based DPI systems (DPI VNFs) can scale up to 100 Gbps in

 5

a Virtual Machine running on top of powerful hardware. As the demand increases, the

telecom operators will need application identification systems like NGFWs and DPI

systems running with the speeds in the order of Tbps of traffic classification in real-

time and such as in a single instance of DPI. The performance gain arises from the fact

that the classification operation starts at the switch-level code data plane and continues

in the user-plane.

1.2. Thesis Contribution

In this thesis, we aimed to introduce the application layer processing capabilities of

P4-based programmable switches and their usage in application layer processing. We

investigated and proposed a solution for Protocol Independent Switch Architecture in

order to process application layer data, enabling the inspection of application content

and triggering an appropriate response. Protocol Independent Switch Architecture is a

novel approach in networking where the switch does not run any embedded binary

code but rather an interpreted code written in a purpose-specific language. The main

motivation behind this approach is that telecommunication operators do not want to

be locked in by a vendor for any type of networking equipment, develop their own

networking code in a hardware environment that is not governed by a single equipment

manufacturer and single code base. This approach also eases the modeling of

equipment in a simulation environment as all of the components of a hardware switch

run the same compatible code in a software model to help researchers develop their

code and simulate it without access to actual P4 hardware. The novel techniques in

this thesis exploit the main functions of a programmable switch and combine the

streaming data processor for application layer data processing software to create the

 6

desired effect from a telecommunication operator perspective to lower down the costs

and govern the network in a comprehensive manner.

In this study, it is aimed to display the change from SILO oriented legacy

telecommunication services to the future of telecommunication systems, including

subscriber-defined services with near real-time processing and very low delay and

higher capacities without limitation to the access platform. Many researchers

performed studies in the area of progress and effect of SDN and NFV partially [3], [4],

[5–14] however, none of the studies present an end-to-end picture defining all aspects

for an operator as well as defining the application layer processing of programmable

switches. The study differs from the others by two critical elements: i) it covers the

whole picture for an operator from an inside view of an operator, and ii) it presents the

progress of all fields in the picture covering progress in the control plane (SDN), data

plane (NFV, PISA and others), and evolution of software development culture with

the improvements in orchestration and automation. The effect of programmable

hardware and almost human-free operation is introduced and elaborated. Although the

research and adaptation are spreading among the operators, most decision-makers and

adapters are confused about what SDN is and what it will bring. There are also some

PR efforts by some vendors, trying to position SDN as a magic pill to solve all the

existing problems of the operators. Indeed, it would even increase the complexity of

the issues without proper planning before production.

This study proposes a solution using PISA switches with an application layer stream

processor enabling application visibility and control in an outstanding performance.

 7

The proposed architecture processes the packets in a network switch while selecting

only necessary ones to the L7 based systems such as DPI and NGFW. This approach

increments the performance of NGFW and DPI systems in the order of 40 times.

Building such flexible and scalable application visibility system is challenging.

Achieving this goal brings a question: How network operators should design such

solution processing packets in L7 knowledge with the performance of L4, in other

words, they should figure out how to scale out such system for high volume of data in

real-time? One will find out the answer to this question throughout this thesis.

1.3. Thesis Organization

Chapter 2 gives a background on the change in a Telecommunication operator world

with the use of Software-Defined Networks and their application in

Telecommunications networks in general. The literature summary points out that the

change is not limited to a single improvement in SDN, rather than it depicts that it is a

change in the culture of software development, architectural design, and approach to

the subscribers affecting all the stakeholders of the telecommunication systems.

Chapter 3 explains the proposed system architecture, bringing data plane performance

into L7 systems (such as DPI and NGFW) by using our approach for the thesis.

Chapter 4 discusses the experimental study, gives the results of the experimental study.

Chapter 5 concludes the thesis by elaborating the results of this study together with the

transformation of telecommunication systems. This part also points to the importance

of the contribution of this study into the literature and telecommunication operator and

their vendor ecosystem.

 8

CHAPTER 2

BACKGROUND

2.1. Introduction

Software-Defined Networks (SDN) and its practical applications draw great interest

from researchers in the telecommunication field. SDN separates control and

forwarding planes of a network and provides a centralized, simplified view for

improved automation and orchestration of services. SDN controllers provide

communication between network planes that have been separated by a networking

device. NFV concentrates on the software dedicated to networking functions. NFV

separates network services - including firewalls, content storage, name lookup,

routing, and load balancing - from vendor equipment. Separated services can be

executed in a virtualized environment to innovate and quickly provision services due

to the cloud. This separation allows the flexibility of selecting/defining services for a

subscriber forming chain of services which is called service function chaining (SFC).

NVF ensures the network can seamlessly integrate with multiple virtualization

technologies, particularly those that support multi-tenancy.

Switches and routers are presented as white boxes that are made from off-the-shelf

standard chipsets in an open market, compared to proprietary chipsets that are designed

by an individual producer. Hence, networking software and protocols can be deployed

and executed via SDN without the constraints of working with one particular

equipment manufacturer’s proprietary restrictions.

 9

The research topic has numerous fields, as depicted in Table 1, that capture the main

search areas in SDN. The topics in SDN draw enormous attention from

telecommunication sector as a top area of interest. The reasons for this interest are

going to be explained in the next section.

Table 1 Keywords used to search in Google Scholar and Microsoft Academic, between 2016

and 2020 as of November 2020. Keywords Google

Scholar

Microsoft Academic Type

SND NFV (without quotes) 21100 3555 Main
"SDN NFV" (with quotes) 8250 372 Main-Backup
"Network Automation" 4900 283 Mixable
"Edge Computing" 42200 10655 Mixable
"Openflow" 25200 3524 Mixable
"Cloud-Native" 5270 223 Mixable
"DevOps" 17400 1541 Mixable
"Zero Touch Network" 181 14 Single
"P4 language". 859 51 Single
"Edge Computing" SDN NFV 5260 214 Combined
"Openflow" SDN NFV 8210 1520 Combined
"Network Automation" SDN NFV 910 275 Combined
"Cloud-Native" SDN NFV 676 214 Combined
"DevOps" SDN NFV 689 1289 Combined
Type field contains 5 types:

Main and Main-Backup: Primary search terms, combined or separately.

Mixable: Search term that can be used together with the main term.

Single: Search term that cannot the used together with the main term.

Combined: Search term combined with the main term.

2.2. The Need for Change in the Telecommunication Sector

Before discussing further details of SDN, NFV, and their impact, it would be better to

define the current status and future expectations from an operator roughly. As depicted

in Figure 1, in a traditional operation, the operator's principal assets are the

transmission infrastructure bringing the connectivity between the core cloud and the

broadband access for the subscribers. Typically, the operators are hosting their

compute infrastructure, mainly for hosting OSS, BSS systems, and some services

through data centers in the core cloud. The subscribers are accessing communication

services through broadband access, while an IP communication network forms the

 10

backbone. The design is simple, and the only purpose of broadband access is to

connect the subscribers to the services. The compute technologies provided by a

conventional operator are aggregated into a few data centers. It is also possible to

quantify the service delivered currently by such operators: i) broadband access

bandwidth in 10s of Mbps with a typical latency around 100ms. The number of

connected devices is around 10 Billion. The numbers will change dramatically in the

order of 100x in the new era of telecommunication. The communication speed

becomes in the order of Gbps while the latency is targeted to be 1 ms and 100s of

Billions of connected devices.

Figure 1: The Change in The Capacity Demand, Latency, and Services in the
Telecommunication World

Any comparison concentrated on the numbers' change will be an injustice to the new

era of the telecommunication world, especially for the services. The researchers [3]

summarize the value proposition of SDN and NFV technologies to the operator

business as having; i) virtualized, programmable, and scalable networks, ii) automated

provisioning and configuration, as well as centralized control and management, and

iii) differentiated and agile services with simpler provisioning and higher revenue

generation efficiently integrating into third-party systems.

 100x

$

10Mbps

100ms

10Gbps

1ms

Past Future

Core
Cloud

IP
Networks

Compute
Tech

Broadband
Access

Edge Cloud

100B+

$1

10 years

10B

$1000

1 day

People
DevicesCore

Cloud

Compute
Tech

IP
Networks

Broadband
Access Things

 11

The architecture of the operators will change slightly in the new era. The computing

technology will shift from the core data centers towards the Edge as well as forming a

new edge cloud through a new generation mobile access cloud beside the computing

power. While the core cloud, IP backbone, and access will exist in their position, their

structure will transform. First, the data centers will have extensions with enough

computing power at the Edge delivering near real-time processing power, especially

for systems with the need for low latency like autonomous devices, IoT, and caching

the traffic intelligently to reduce the traffic load through the network. This also triggers

the profile of the users accessing the services heavily from the people to the things.

The new architecture conforms to the telecommunication world's catchword:

distribute when you can, centralize when you must.

Leading operators in the telecommunication world started to adopt SDN into their

network to build a network infrastructure that will optimize costs and spin out new

services faster than the current situation for their customers. NFV is the

complementary technology in creating the target telecommunication architectures for

SDN-NFV transformation.

The change in the telecommunication systems is not limited to the infrastructure's

architecture but mainly focuses on the way of approaching the subscribers. The

systems are changing to be customer-oriented service-based systems rather than

system-oriented subscription basis. This change in subscribers' approach ultimately

needs end-to-end automation from service requests to delivery, including

provisioning, maintenance, and service closure. The adaptation of SDN and NFV is

 12

transforming the networking and changing the culture and roles of people in the IT

chain, and similar to what DevOps brought to software development and operation life

cycle. Telecommunication networks are transforming to become a New Infrastructure

paradigm than merely extending the Cloud by considering the evolving "Edge"

demands. This shift is not limited to but includes the adaptation of edge computing,

which becomes mandatory for 5G and IoT applications in real-time, as well as

extending their edge to customer premises through SD-WAN.

All these improvements are evolving together with advances in software development

culture. The evolution of networking technologies is triggered by the progress in

software development culture and information technologies. The building blocks

enabling the transformation in the IT world are explored in the next section.

2.3. Evolution of Information Technologies and Related Environments

While the networks transform into software-driven, programmable, service-based

infrastructures, the new paradigm should provide agility, scalability, and fully

automated systems. Such phenomena in the world are always triggered by cultural

changes in the way of doing the tasks. One of the most significant moves in this

paradigm is the cultural change in application development, deployment, and

maintenance and operating it in a new mindset.

The movement from monolithic application development to microservices changed

the structure of all stories. It started with the commencement of the cultural movement

of application development named by Debois, P. as DevOps [5]. Although there are

 13

some formalized set of operational processes defining the workflow and relationship

of service design, strategy, transition, operation, and continual service improvement

like IT Infrastructure Library (ITIL), DevOps focuses on the productive collaboration

of software developers and IT operation personnel by changing attitudes, processes

and team interactions [6]. Unlike ITIL, there is no clear delineation in DevOps. It uses

agile software development methodologies and applies them to automate all software

lifecycle steps from development to deployment for operation. DevOps broke the

burdens of traditional SILOs and brought agility into the whole application and

operation lifecycle.

2.3.1. VMs, Containers, Dockers, and Kubernetes

Another significant movement affecting this phenomenon happens around

virtualization technologies. The networking side's transformation has a tightly coupled

relationship with the one on the server-side, especially in NFV. The story started at the

Massachusetts Institute of Technology (MIT) for the MAC project, which stood for

Mathematics and Computation [7]. The project's needs gave rise to developing the first

time-sharing operating system (OS) to utilize all the computer resources.

In the late 80s and early 90s, virtualization took the role of running a different

operating system on top of a host OS to help the users for software compatibility.

Although virtualization was to get the ability to run an application on other hardware

platforms such as running windows (and its applications) on a mainframe

environment, later, it turned out to be a resource utilization-oriented approach to lower

the costs. In the late 90s, VMWare [8] became the flagship of computing resources'

 14

virtualization, including servers and desktops. Virtual desktop environments were

another flavor of this progress in allowing the users to use a desktop running on the

server-side, which simulates early time-sharing environments with a sophisticated

graphical user interface. A generic VM architecture has a hypervisor controlling all

the infrastructure resources to serve guest operating systems, as shown in Figure 2.

Every virtual machine allocates separate memory and computes resources for its OS;

thus, it should keep the copy of a packet for itself while processing, which is the reason

for performance degradation. These performance problems and additional security

concerns resulted in the development of containers.

Figure 2: Virtual Machines Compared with Containers

Unlike VMs, containers are built on a single operating system and managed by a

container manager, as illustrated in Fig. 2. Shared components, among other

containers, are read-only libraries. Container-based applications can be started in the

order of seconds compared to a few minutes in VM-based applications. Containers

increase the use of shared resources much higher than VMs, reducing private parts of

resources. This nature of the containers makes them lightweight, resulting in higher

granularity in a machine and higher performance than VMs.

Application

Container Manager

Application

Host OS

Hardware Infrastructure

Container

Application

Guest OS

Application

Guest OS

Hypervisor

Hardware Infrastructure

VM

 15

There are some tools facilitating containers by allowing users to create, deploy, and

run applications like Docker [9]. In addition to more accessible packaging support, it

also has a clustering tool called Docker Swarm to schedule and orchestrate clusters of

containers in different machines. Similarly, Kubernetes is developed at Google to

automate the deployment, scheduling, and scaling of containerized applications and

support many containerization tools such as Docker [10]. Later it has been donated to

Cloud-Native Compute Foundation (CNCF) under the Linux Foundation as an open-

source project. It is the de-facto standard in container orchestration with the

capabilities of grouping containers into logical units allowing the systems to distribute

containers into multiple physical nodes scaling up to enormous dimensions and load

balancing. By using Kubernetes, the big data center owners or operators can run

multiple instances of an application and independent upgrades and versioning. On the

NFV side, container technology's effect transforms the VNFs into Container Network

Functions (CNF).

In comparison, while containers enable isolation of performance by managing the

CPUs, memory, and similar resources, Docker allows easier control and packaging.

On the other hand, Kubernetes stays at a higher level dealing with the composition of

services, load balancing, naming the services, and controlling multiple versions of

services (by enabling the versioning). Kubernetes handles all those and routes the tasks

to the proper implementations. This ability at a higher level of orchestration allows the

users to decouple operations from deployment to have a granular separation of the

functions.

 16

The researchers conducted several studies to demonstrate the performance comparison

of virtual machines and container systems. [11] conducted a performance testing

between Linux's kernel-based virtual machine (KVM), Docker, Linux Containers

(LXC), and Cloud Operating System (OSv). The tests were performed on comparing

CPU, Memory, Disk I/O, and Network I/O performance degradation from native

usage. The container-based solutions (Docker and LXC) outperform VM-based

solutions similar to the study of IBM research, in which they report similar results

in[12]. Lately, the analysis compares in application domains, such as big data [7] using

Spark, NoSQL environments [13] using Cassandra. Both studies show that container-

based solutions outperform virtual machine-based solutions with better resource

utilization and scalability. In addition to performance, security is another concern in

IT systems, as mentioned in [14] where container-based methods are evaluated more

secure by minimizing attack vector compared to VM-based solutions.

Although the change in the virtualization methods improves the performance of the

systems, as can be seen from serious studies[11][12][14], the change in the

virtualization is a revolution in; i) concentrating on the services rather than machines

and structuring them as microservices, ii) dynamically managing services by scaling,

updating, and co-operating multiple versions as needed, and iii) grouping the

containers to simplify management, enable load balancing, high availability, and

deployment. This different approach comes from containers' power in opening

resource-efficient services quickly and retiring them similarly when the demand

expires and maintains resource and security isolation between services.

 17

2.3.2. Cloud-Native, Edge Computing, and Microservices

The cultural change with DevOps processes brought agility, effective use of

microservices architectures, and continuous integration and development (CI/CD)

workflows. Containers became the best suitable implementation platform for those

microservices-based, agile applications. This total change enhanced the applications

to run in a cloud environment smoothly. Lately, the cloud-native term is widely used

to define the applications and services capable of running in cloud environments.

While cloud-native services focus on overall user experience and the companies'

internal IT compliance, cloud-native services are focusing on delivering to the massive

scale of applications. This nature simplifies cloud-native applications because of their

small and stateless nature, which increases mobility and scalability. Cloud-native

services span across the data centers, Edge, and user devices. A Cloud-native mindset

is a key to leveraging compute at the Edge [15]. The architectures leverage the

accountability for computing and communication while bringing intelligence towards

the Edge.

The customers' changing demands helped shift the focus of service providers from

traditional virtualization-based data centers to simple, flexible, microservice-based

cloud-native services using Linux containers [15]. This change allowed service

providers to speed up the rapid development and deployment of new services to scale

up and down upon changing demands and traffic patterns.

2.3.3. Data Centers

The data centers evolved in several generations. In the first generation, they aimed to

optimize the cost of capital expenditures, mainly in hardware, by using virtualization.

 18

The second generation of data centers, currently in use, uses public clouds, which frees

enterprises to set up their physical systems. The business logic is still the same and

manages all the systems remotely. The evolution from the first generation to the

second generation can be summarized as changing from hardware to software-based

data centers.

The future generations will be server-less computing. In this generation, one does not

deal with today's daily tasks such as OS configuration, load balancing, or patching

systems, but only needs to deal with the computing capacity or services. The

customers' objectives will be the quality of services throughput or latency of the

applications or functions rather than several VMs or the amount of storage.

Figure 3: Four features of a Next Generation Telecommunication System

2.4. Expectations of the Operators

The new demands from telecommunication systems and technological progress lead

the telecommunication research community to prioritize new features for the target

system designs. Figure 3 summarizes the four critical areas that the research is

concentrating on.

 19

In the past, most of the operators were only concentrating on the availability of the

services. The box-oriented approach in telecommunication infrastructure resulted

from this basic approach favoring simplicity. It was easier to implement a single

application without considering integrating it into other systems. Availability is still

the first expectation from a system to guarantee stability and design with security

concerns. An insecure platform is unavailable since someone else shares the platform's

control with immediate access to the systems. The redesigned systems are trying to

disaggregate the systems' parts to reduce the complexity of the systems that will also

increase the availability. Disaggregation will be the key to improving availability.

Although availability is crucial for the services' existence, there was limited

manageability support of the box-oriented vertical systems. Manageability brings

visibility to systems, without which the performance does not matter. Automation is

the part or mutated form of management favoring agility while designing new services

and quickly delivering service to a customer. Automation is crucial while it would

reduce the flexibility in the availability by enforcing the systems to comply with some

standards or way of doing their tasks, which would lead them to lose some

functionalities or performance.

The new drivers of technology increased the operators, and all kinds of providers'

demands, squeezing them between the walls of needs and delivery. The traditional

vendors were delivering new features or bug fixes in several months' even years

according to their release cycles while the demands are evolving too fast. There is no

 20

future with the conventional way of doing business, and all providers should adopt

new services or upgrades within at most a couple of weeks to survive.

With the burden of this evolution, the future of the integrated telecommunication world

covering cloud, edge computing, and data centers, including cloud-native applications,

services, and portability of them, will be built by using the open-source tools tightly

integrating and orchestrating across containers. This evolution in open-source

technologies shifting all communication systems into the next phase also requires

some arrangements on compliance (regulations) and security protocols with being

fully auditable to ensure providing acceptable service level and supporting common

identity and access management, policy management, and a full range of service

portability [16][17][18][19].

2.5. The Results of the Changes in the Operators

The operators are developing their products to survive within the competitive

environment in a "saturated market". This allows them to deliver -any feature, any

time- reducing the service time of a new service or a new feature in a current product

to almost zero while having it with incredibly cheaper costs. The operators are

becoming part of open-source initiatives to have flexible and less expensive systems

and assuring security across the network.

Most of the open-source projects focus on either fiber or wireless access. In both

product lines, while the intelligence was embedded in access equipment in the legacy

products, it is taken out to the outside of the systems by disaggregation in the new

telecommunication world, resulting in simple hardware with more sophisticated

 21

software. This idea is supported further by transforming many monolithic applications

such as eNB into disaggregated control and data units with network slicing support.

One key in this journey is disaggregation, which requires a redesign of network HW

and SW [20]. Disaggregation allows researchers to work with a smaller subset of a

problem at a time, leading to a speed-up in innovation while helping the technology

users optimize the resources they use (such as reducing the hardware usage). As a

result, the network equipment evolved from a legacy black box to disaggregated

programmable equipment with control-data plane separation. Cloud RAN is proposed

to create a programmable world for 5G and its future successors. Its main aim is to

reach optimized converged networks. The total target in the cloud RAN is to

accommodate the expectation of future services. Several initiatives define the

standards of cloud RAN, such as O-RAN, C-RAN, and X-RAN projects.

Disaggregation in the systems triggered the consolidation of anything. Operators

having mobile and wireline services will consolidate the control planes in a simple

system. Simplification of user plane will allow operators to manage users as a single

entity regardless of the subscription diversity to the services. The convergence in the

control plane will let the operators define end-to-end network slicing and even defining

a computing resource use service as a combination of cloud and edge computing

resources.

Several factors are forcing the operators to join this revolution. Although the cost of

serving the customers seems to be the priority, it would not be fair to put it in the first

place. A more important reason that should be noted is the time delay between

 22

developing a new feature in the systems and putting it in production. Once the

operators use the software-driven networking, it will help them deliver a new feature

to all users almost within a week. Hence, it is evident that open source brings far faster

deployment, updates, and innovations.

To succeed in this movement, success should be demonstrated publicly. Hence,

network operators publicly stating that they are transforming their networks into a

platform for innovative services and build the "network as a platform" by using

SDN/NFV/Cloud with disaggregation, open-source, white boxes to reduce Capex and

Opex significantly [20]. More interestingly, those changes recall the saying by Sun

Microsystems: "Network is the computer." This applies to our case now: "the

operators' infrastructure is the computer."

2.6. The Impact of Automation

The final part completing the picture in a carrier-grade network is the coordinator

working closely with the operation of the applications and services that generally run

on the network and the underlying infrastructure. The industry uses the term

orchestrator [15] to coordinate and manage all network and compute elements needed

to deliver a virtualized network service, including provisioning.

In 2014, ETSI ISG NFV published the standards for NFV related operations,

interfaces, and functional points to conform to different requirements [21]. Several

open-source products in NFV management and orchestration (MANO) solutions like

ONAP [22], OSM [23], Open Baton [24], Cloudify [25], OPNFV [26] are at the

 23

various stages of development, based on the released ETSI standards. The needs of an

operator beyond the boundaries of NFV management. They need to automate service

design and creation, service orchestration, inventory management, control loop

automation, policy management, SDN controller orchestration, Hypervisor

management, legacy system management and similar tasks.

The most promising network automation software among the orchestrators, Open

Network Automation Platform (ONAP) by Linux Foundation Networking, is almost

becoming the de facto standard for the real brain of the whole infrastructure for an

operator. Although OSM itself is owned by ETSI, the maintainer of the standard, it

lacks critical features such as Kubernetes support, PNF integration, edge automation,

real-time analytics, network slicing, data modeling, homing, scaling, and network

optimization, as shown by a recent study [27].

To leverage the automation, Cloud-Native Architecture is critical. Figure 4 shows a

brief difference between VM Architecture and Cloud-Native Architecture, as

demonstrated by Kapadia [28]. The demonstrations aim to show how easy to onboard

5G core and Next-Generation Firewall with Cloud-Native Network Functions (CNFs)

using ONAP, OPNFV, and Kubernetes, along with the working demonstrations and

end-to-end testing in a lab environment.

 24

Figure 4: VM Architecture vs. Cloud-Native Functions

Going one step further, zero-touch networking and service management (ZSM) is

proposed to get high-level human intents to generate low-level configuration

generation for low-level devices and controllers with validated results. The main

target of ZSM is to minimize the ratio of faults caused during human intervention.

2.7. Zero-Touch Networking and Service Management

There is a tradeoff in network operation between scalability, reliability, and efficiency.

It is almost impossible to have all in the highest positive manner. This tradeoff results

from an operator's basic requirements; i) enough capacity, ii) cheap infrastructure and

operation, iii) high availability, and iv) rapid evolution to the changes.

According to Koley [29], 70% of all telecommunication systems' faults occur while

being touched through management systems. Moreover, response times of

provisioning procedures for techniques that will increase with 5G, such as edge

computing and network slicing, will be required to be in the order of milliseconds,

which indicate that manual operation with a human touch is out of the question.

 25

The change in the architectures of delivery and operation triggered a new concept in

the automation of all telecommunication services covering the entire lifecycle of

network operations, including planning, delivering, onboarding, monitoring, updating,

and decommissioning of services beyond the initial installation [15] which is called

Zero Touch Networking and Service Management (ZSM) by ETSI [30]. ZSM has been

receiving attention in the last years in this context, with no complete existing solution.

Most studies focus on the models that can benefit from ZSM [31], [32], [33]. ZSM

proposes a solution trying to keep all three elements together positively with intent-

driven operation [34].

The main target of ZSM is to get high-level human intents to generate low-level

configuration generation for low-level devices and controllers with validated results.

Koley [29] proposes a Zero Touch Networking model designed to keep two

infrastructure knowledge models: The network model and the configuration model.

The network model and Configuration model are different views of the same

information as topology and configuration. Once a change occurs in any of the models,

it is reflected in the other model.

According to ETSI ZSM requirements based on documented scenarios [35], there are

39 scenarios in 176 total scenario requirements. One of the most challenging parts of

these scenarios is called "Analytics & machine learning." Business requirements such

as determining the root cause of a network anomaly and the ability to foresee network

capacity exhaustion are few examples. To achieve these requirements, collecting a

massive amount of historical and up-to-date network data and transferring it into a

 26

sandbox environment for self-learning are also defined in functional requirements.

Once the analytics and learning capabilities are developed, they will be used in closed-

loop automation.

The ambition towards AI/ML-based solutions for complex problems such as 5G

management is not always easy to achieve. According to Benzaid and Taleb [31],

although AI is seen as a critical factor for lowering operational costs and reducing the

risk of human error, potential limitations and risks exist in using AI techniques. The

authors summarize these limitations in 4 topics: i) Lack of Datasets and Labeling,

ii) AI Model Interpretability, iii) Training Time and Inference Accuracy, and iv)

Computation Complexity.

Similarly, the massive amount of telemetry data collected from network devices

requires novel approaches and techniques to develop full-fledged, usable AI models.

One of the most recent studies in this area [36], aims to solve the autonomous

placement of Virtual Network Functions (VNFs) in 5G networks. Instead of using

Supervised Learning (SL) models, the researchers used a particular form of Adaptive

Reinforcement Learning. They achieved prediction accuracy performance gain by 40-

45%, and overall VNF placement efficiency over against other SL benchmarks in 23

scenarios out of 27. This particular technique decouples the AI model from the training

nodes, whereas other SL models are tightly bonded to the training nodes.

 27

2.8. The Shift in Edge Computing

The term "edge computing" was first used by Akamai Technologies in 2002, which

also holds a patent about it in 2004 [37]–[39]. In their context, edge computing was a

particular methodology to deliver Java-based application content responsively to web-

browsers to improve user experience.

The definition moved to Mobile Cloud Computing (MCC) after the popularity of

Cloud Computing as a buzzword [40] [41]. MCC aimed to deliver content fast and

efficiently to mobile users by using the infrastructure of the mobile operator or ad-hoc

network created by the mobile users. Later, it is referred to as Mobile Edge Computing

(MEC). A more recent and relevant definition from the chair of the MEC group of

ETSI, Reznik, in the personal blog, was "anything that's not a "data center cloud" [42].

The most incentive that drives MEC is the enormous size of data and the computing

power that the devices have to handle with the emergence of 5G networks. Mobile

Edge Computing is capable of leveraging mobile resources by hosting computing

applications, processing vast volumes of data prior to cloud sending, delivering RAN

(Radio Access Network) cloud computing services in the last mile to mobile users.

The applications that are empowered by MEC require immediate real-time responses,

including but not limited to autonomous driving, telemedicine, remote surgery,

robotics in production and warehouses, logistics, and many others. According to a

recent survey on this area [43], “there are three main types of MEC use cases:

consumer-oriented services, operator and third-party services, and network

performance and QoE improvements.”

 28

The intelligence in Edge plays an important role in the delivery of services to

consumers in close vicinity [44]. The researchers describe the transformation of MCC

to MEC, stating the differences between the two and the driving forces of the

transformation., which was renamed by ETSI as Multi-Access Edge Computing,

dropping the “Mobile” part and extending the term to include fixed-mobile

convergence [45]. The researchers provided a use-case for MEC to determine the

proximity of a mobile user with the help of 5 different AI algorithms in comparison.

Telecommunication systems are not limited to wireless communications. Hence the

edge in the wireline systems spans towards the customer premises. SD-WAN is the

logical extension to the SDN infrastructure of the operators to customer premises. The

revolutionary change at the core and access triggered SD-WAN's evolution to fulfill

the customer's picture. The operators currently deliver simple L2 or L3 pipes as a VPN

service with minimal traffic engineering support, mainly through their MPLS

networks. The Edge in the future should support application-centric slicing and traffic

engineering besides the current L2/L3 pipes. Another new improvement in the WAN

side is Service Function Chaining (SFC).

SD-WAN [46] is one of the enablers of hybrid cloud ecosystems combining on-

premise and cloud-based applications. SD-WAN solutions bring full flexibility to the

customers' aggregating network functions from different vendors into a single box and

enable the ease of access to the cloud. SD-WAN minimizes the need for MPLS

between a central office and branch offices by using software-based techniques to

reduce the need for high-speed connections, providing built-in packet-level security,

 29

deduplication, and data caching [47]. The study also demonstrates an SD-WAN

network example using open-source software, which is OpenDayLight [48] [49].

According to Wu et al., there are at least 960 patent applications as of late 2020

containing SD-WAN as a keyword [50].

SFC is not limited to the edge of the telecommunication systems. Actively using SDN

and NFV allowed operators to define a workflow for any kind of customer data flow

through SFC's help at the core of their infrastructure. The ability to define customized

paths for any data flow reduces the need for resources since only the prescribed flows

pass through any network function contrary to the current deployments. All data flows

pass through all functions residing in scalability and high resource consumption

problems.

2.9. Next-Generation Security Services in Telecommunication Networks

Modern problems require modern solutions. As the SDN/NFV enabled networks and

operators emerge, customers' cybersecurity services will be shaped differently shortly.

In the foreword of "Guide to Security in SDN and NFV, the foreword author raises

concerns about security in the SDN-NFV era by complaining the German presses

suspicions that it "could be a tool for evil network operators to manipulate traffic flows

against the public interest." [51] On the other hand, with the rise of IoT devices and a

massive amount of data to deal with, SDN could be the best way to prevent IoT-based

Distributed Denial of Service (DDoS) attacks [52].

 30

Providing security-as-a-service could be one of the ultimate goals of

telecommunication networks. As the processing power of network devices increases,

the security services are moving towards the Edge. In a recent study with an attractive

title, "Towards security-as-a-service in multi-access edge" [53], authors "propose a

data-centric SECurity-as-a-Service (SECaaS) framework for elastic deployment and

provisioning of security services at the Multi-Access Edge Computing (MEC)

infrastructure." Motivated by the rapid growth of the Industrial Internet of Things

(IoT), autonomous driving, and smart home applications, and the shortcomings of

security measures taken at the core network to secure the services, authors suggest a

novel security architecture that should be offered at the near edge of the network for

tenants with different requirements by using the Named Data Networks (NDN)

architecture [54] [55].

To offer security services, the underlying system architecture should be robust and

secure as much as possible. In a recent survey on SDN-NFV security [56], authors

conclude that at least three central issues and potential research areas are popular: i)

The performance impact of enhancing security in SDN-NFV networks, ii) The

importance of detecting abnormal behavior within the layers by monitoring, and iii)

The security issues related with OpenStack.

2.10. Programmable Hardware

While SDN is the first half of the journey towards the programmable world,

programmable hardware will build a dynamic system wholly programmable. In recent

research on this topic, the authors of [35] explain the need for programmable hardware

 31

and the features of its’ language in three items: "i) Reconfigurability in the field:

Programmers should be able to change the way switches process packets once they are

deployed, ii) Protocol independence: Switches should not be tied to any specific

network protocols, and iii) Target independence: Programmers should be able to

describe packet-processing functionality independently of the underlying hardware's

specifics.”

2.10.1. Protocol Independent Switch Architecture (PISA)

The research on programmable switches led to the definition of a reconfigurable

match-action table (RMT) [57] based hardware that can be programmed with a

domain-specific language. Protocol Independent Switch Architecture (PISA) is a

special case of RMT, that supports P4 language as the default domain-specific

language [58].

Figure 5: PISA Match-Action Table Processing Pipeline (Gupta et al., 2018)

Programmable
Deparser

Stagesip.src=1.1.1.1
ip.dst=2.2.2.2

...
Packet Header

Vector

Programmable
Parser

M
em

or
y

Persistent
State

ALU

 32

A typical PISA switch consists of a programmable parser, ingress match-action table,

a queue, a set of registers to keep the state of variable, egress match-action table and a

programmable deparse as shown in Figure 5: PISA Match-Action Table Processing .

The parser and deparser are programmed for processing any type of header,

specifically user-defined ones. The ingress and egress pipelines are the actual packet

processing units that go through match-action tables in stages. Match-action tables

match the header based on a set of rules that are controlled by the control plane and

perform the corresponding action on the packet. Actions use primitives to modify the

non-persistent resources (headers or metadata) of each packet.

2.10.2. P4 Language

Although there are several studies developing and using programmable hardware

[59]–[62] ,the early use of programmable hardware is to make ease of use of telemetry

data. Telemetry data is crucial for an automated future but generating telemetry data

is not a trivial task. Adding more hardware and software to the routing and switching

systems makes the current architecture more complex than ever. Since the telemetry

data is generated at the packet level, the most logical way of doing this seems to be

arising from the packet generating software at the hardware level, which leads us to

P4, Programming protocol-independent Packet Processors, as called in the original

paper defining it [63]. P4 is a domain-specific programming language for packet-

processing hardware such as a router, switch, network interface cards, and network

function-related appliances that work and data plane based on the decisions from the

control plane as in Figure 6.

 33

Figure 6: P4 Architecture (Source: Adapted from [64])

In a typical PISA switch, the execution of a P4 program is explained in Figure 7 (Hang

et all.) which is summarized as the following steps:

1) The user develops a P4 program, which can be any type of network function, such

as router, firewall, load balancer or packet inspection switch.

2) P4 compiler compiles the program as a JSON file and sends it to the switch, which

can be a physical switch or a software model of it.

3) The states of parser, match-parser, match-action tables, ingress, egress queue and

deparser are controlled by P4 execution.

4) The states of match-action tables are additionally controlled by control-plane with

can change the behavior of the P4 code at runtime.

Data Plane

P4 Program

P4 Architecture
Model

P4 Compiler API

Dataplane runtime

Control-Plane

API

Tables extern
objects

LOAD

LOAD

control
signals

 34

Figure 7: Pipeline execution in a P4-enabled switch (Hang et al., 2019)

P4 programs ease the development of a network equipment code to a level that only

128 lines are enough to build a simple IP switch with header validation [65]. Although

the language itself is simple, there are other tools that emit P4 language code from

another high-level language, such as the work done by the authors [66], P4HDL, which

generates P4 code from a pseudo-code.

2.10.3. In-band Telemetry with Programmable Switches

The above three requirements to develop a programable hardware are not the only

features addressed by P4. One of the most promising features of P4 arises in the

telemetry. In-band Network Telemetry (INT) is defined in P4 language as one of the

main applications [67]. Since P4 executes at the packet-processing level, it can rewrite

every segment of the packet header, including the custom headers. This type of

modification cannot be done in traditional statically programmed hardware-based

network equipment. P4 helps set up a data plane by using the packet headers

 35

appropriately to collect even more information on the network's status than what we

can determine using conventional methods [68].

The idea behind INT is to collect telemetry metadata for each packet, including routing

paths for the packet, entry and exit timestamps, the packets' latency, queue occupancy

in a given node, use of egress port connections, and alike. These measurements can be

produced by each network node and sent in the form of a report to the monitoring

system. Another way to embed them in packets is to update them into allocated nodes

at any node on the packet visits and connect them to the monitoring system. In a recent

study, researchers used P4 INT experimental validation for telemetry-based

monitoring applications on the multi-layer optical network switches [69]. Using the

telemetry data and the integrated software around it, semi-automatic congestion

control over optical network switches can be achieved with the currently available

SDN/NFV systems.

Figure 8: In-band Network Telemetry

Although telemetry data can be collected in any way that is defined by P4 code, there

are two types of telemetry that are defined in a standard P4 implementation [70]. As

shown in Figure 8, telemetry data can be either embedded within a packet, which is

Ethernet IP UDP INT Header INT Data INT Data Payload

Ethernet IP UDP INT Header INT Data INT Data

Embedded Telemetry Mode (INT-MD)

srcIP, srcPort = switch IP,Port
dstIP, dstPort = Telemetry Server IP, Port

External Telemetry Mode (INT-XD)

A. Original Packet

B. Modified telemetry packet

 36

called INT-MD, or extracted as a separate packet, called INT-XD. INT-MD is usually

used by intermediate routers (switches to identify any type of problem that might occur

along the path, which INT-XD is useful for external applications that don’t need the

payload of the original packet.

2.11. Real-time Data Streaming

Real-time data streaming is shown to be beneficial for safety-critical networks by

removing possible bottleneck situations at the data cumulation joints, such as the data

aggregator switches at the industrial networks. In these networks, a possible delay in

data would cause disastrous events, and data-streaming is a very good candidate

solution as a remedy to this [71]. In the context of programmable switches, real-time

data streaming is combined with telemetry in order to add application analytics,

visibility, and troubleshooting features to a network stream. Apache Spark [72] and

Apache Flink [73] are two of the most prominent software that is being used in

streaming network telemetry data.

2.12. Deep Packet Inspection (DPI) and Application Layer Visibility

Deep Packet Inspection is important for telecommunication operators to gain more

insight about the network and subscribers for revenue generation as well as cyber-

security. A series of research [74], [75], [76] made in this area by the same author

showed that subscriber profiling based on application-level classification is critical for

operators to increase the revenue and generate insight about the network. As the name

implies, DPI inspects every packet with respect to the source, destination, header

information, payload, and any other layer that is wrapped into it. Application layer

visibility enables operators to distinguish between their subscribers and offer them

 37

new subscription services accordingly. As the video content is on the rise, operators

can offer subscribers based on their use of online video services, such as Netflix,

Amazon Prime, or Hulu. In addition, DPI is a supportive tool in employing Lawful

Intercept or applying some appropriate filters to the Internet access of children.

2.13. Future Directions and Challenges in Telecommunication Networks

Multiple transformations happening around us, the shift from VMs to container-based

virtualization, improve the isolation, performance, and ease of operation, and bring a

higher level of operations. The transformation in networking moves from legacy

networking concepts into SDN-NFV based flexible, dynamic, agile, and more

straightforward operation. The orchestrators are bringing dynamic resource

management, service provisioning, and yet to come zero-touch networking and service

management. The mind map Figure 9 gives a brief explanation of the continuous

transformation of the telecommunication systems.

 38

Figure 9: Mind map for the Transformation of the Networks

5G is a different business enabler for operators. It has different economics. It brings

"programmable multi-access to the edge." This is an evolution in the access

technologies where the operators are touching the customers through the Edge.

Although 5G is promised to everyone by operators and governments, it is more

important to start the services of 5G through any spectrum (4G) regardless of the

spectrum. This allows the technology developers and operators to test their service

while allowing the subscribers to see what is being promised in a nutshell.

Software-Defined
Anything

WIRELINE

COMMUNICATIO
NS

Circ
ut S

witc
h

Pac
ke

t

Switc
h

Multi-
Protoco

l

Lab
el

Switc
h

LICENSED WIRELESS

COMMUNICATIONS

Voice, Telegram, Short Message, 1G

Data, Social Media, 3G, 4G

Content, Connecte

Ecosystems, IoT, 4G, 5G

DATA
CENTER

Cloud1.0
, V

irtu
ali

za
tio

n on Prem

Cloud 2.
0 H

ard
ware

-on-dem
an

d

Cloud 3.
0,

Compute,

Serv
erl

es
s F

uncti
ons

UNLICENCED WIRELESS

COMMUNICATIONS

WI-FI 1, WI-FI2
WI-FI 3,4, Bluetooth

1,2,3

WI-FI 5,6, Bluetooth

4.X, LTE-Unlicensed,

LoRaWAN

 39

One of the obvious things that are seen so far, because of the operators' low falling

incomes, rather than competing in infrastructure installation, the countries will start to

aggregate the infrastructures for active sharing among multiple operators. This active

sharing will be more comfortable with the evolution of new technologies in the area

allowing global telecommunication operators. There will be several operators

delivering worldwide services by using automated systems. ONAP or similar network

automation platforms will allow big players to access national infrastructures (legally)

more easily.

In the past, any startup or a big vendor was going into the market with their strong

abilities in hardware design and delivery in the telecommunication world. However,

this becomes useless while the transformation steps up. With software-defined

networking, the performance of the computing systems will be determined by the

communication protocols since it will limit the performance of the feature, rather than

HW and SW.

The above changes result from the evolution of the technologies. During the early

times, we were talking about Information technologies. Later, this turned out to be on

communication technologies. The future will be for Data Technologies. This

convergence of the technologies shifted the focus of operators on Data Technologies

to use AI and ML technologies effectively to increase the monetization from data

processing such as subscriber data processing, capacity management, planning, or

churn management.

 40

Many projects are targeting the effect of AI and ML on telecommunication systems.

While long-term tasks deal with availability and effectiveness, including network and

operation planning and resource optimization in a planning perspective, short and

medium-term tasks are related to real-time link scheduling, load balancing, and QoS

(Quality of Service)/QoE (Quality of Experience) in the telecommunication world. In

other words, while long-term tasks are more related to the management plane, medium

and short-term tasks are more related to control and data planes.

In addition to the demands of the edge computing requirements, the domination of the

mobile network (similar to the wireline) with video and other time-sensitive

applications are already forcing the operators to use fiber optic cables as the connection

medium of the base stations. Besides, higher capacity demands and time sensitivity in

applications will shorten the range and reduce the base stations' capacity, and the

number of concurrent subscribers served through a base station. While everyone is

talking about 5G and the evolution of mobile networks, it will increase the use of fiber

optic cable penetration throughout the entire world. Conversely, going towards 5G will

improve the profitability of wireline operators in contrast to their loss expectations.

Networks and IT are converging; hence, the operation and planning teams shall also

be planned accordingly. The new wave and inevitable trends will bring new standards

for the telecommunication world to design the future as: i) Efficient Information

Model for Data Collection, ii) Unified Flexible Interfaces, iii) Autonomous upgrade,

and iv) Intend Driven Functionality Orchestration. Those aims require well-designed

 41

architectures, interface specifications and agile development and open standards, even

open-source systems.

One of the main problems among telecommunication orchestration systems is the

current developer who does not understand a carrier network's complexity. In the

future, the operators will have software developers with extensive knowledge and

experience in developing network applications, while the operation engineers having

an in-depth understanding of networking. This trend will continue until the network

automation and orchestration platforms reach their maturity level. Once they reach

their maturity level, they will have built-in zero-touch networking and service

management module which is already in a primitive era in itself. The rise of ZSM will

reduce the need for any kind of operation staff in telecommunication world.

Edge computing is one of the biggest differentiators for communication service

providers than cloud operators or OTTs. It is built around the only point where they

physically touch their customers while no one else can. This makes the Edge a unique

differentiator for communication service providers and uses it as a critical component

of their 5G and IoT strategy in the next area of innovation for building new business

opportunities.

 42

CHAPTER 3

APPLICATION LAYER PROCESSING WITH P4 SWITCHES

3.1. Introduction

The transformation from legacy systems into software-defined architectures triggered

the change in the hardware architectures. The demand for the change resulted in the

development of PISA switches. The current state of the art in a PISA switch can scale

up to 12.8 Tbps with a single ASIC/FPGA interface running with the speed of

400 Gbps. After the introduction of PISA switches in production environment, the

applications running in L4, such as Load Balancers, Volumetric DDoS attack

detection, and prevention systems, port-based DNS applications are being ported into

PISA switches.

In this study, we aim to extend the use of PISA switches into L7 applications by

designing a proper architecture. In the proposed architecture, by using PISA switches

and its primary programming language, P4, an application-level traffic analyzing

system is proposed in a software-based emulation environment. It’s basically

combining L4 analytics of P4 architecture and L7 properties of the current state of the

art in DPI or similar application layer packet processing systems. The proposed

architecture can be used to build a brand-new NGFW or DPI, by eliminating the

complexities arising from switch-dependent code.

 43

3.2. Current State of the Art (SOTA)

As of my knowledge, in the literature, the current SOTA in Programmable Switches

consists of P4-based match-forward telemetry applications, stream processors and

combination of these two techniques. Although there are many studies using P4

switches with such applications, the following applications are the most popular ones

in their category.

3.2.1. Marple

Marple [77] is the first query language based on P4 language, in order to express

packet matching tasks in a high-definition language, using functional constructs like

filter, map, group by and zip. Marple targets PISA architecture software-only switches

like BMV2 while also providing a simulation environment for switch pipeline. It aims

to utilize the switch resources at minimum (i.e. memory and CPU) while providing

streaming analytics capabilities at the switch level. Marple focuses mainly on packet-

level In-band Telemetry, aiming to solve issues like delay, jitter, TCP in-cast and load

imbalance across network links. The motivation behind Marple is to allow changing

needs of an operator, enable to express there are of interest in network-related

problems without having to redesign of hardware to each different monitoring task.

3.2.2. SONATA

SONATA [78] is a query-driven network telemetry system, based on P4 architecture

and stream processor, deals with scalability issue by filtering the packets from the

beginning before sending to stream processor for further operation. This approach

comes with a trade-off between memory optimization in the data plane and losing

 44

flexibility in stream processor. Sonata tries to solve this problem by utilizing a query

partitioning method that splits the query into two parts: Data plane and stream

processor. While stream processor queries consist of simple constructs such as sum,

count and join, data plane operations include every metadata related extraction in L4

properties of a packet. The focus is given to the data plane part, so that the query

processing in stream processor decreases arbitrarily compared to classical methods,

such as sending directly to stream processor.

3.2.3. Packetscope

PacketScope [79] is based on SONATA, which is a network telemetry system that lets

to peek inside network switches to ask a suite of useful queries about how switches

modify, drop, delay, and forward packets. It tries to eliminate the need for stream

processor capabilities, mimic the operations of stream processor in a resource-limited

environment, i.e., the switch itself. PacketScope expresses the queries by using tuples,

converts the stream processor queries to tuple-based operations, and tags the packets

as early as possible in the packet flow table of the P4 code, so that any packet-related

metadata can be queried in a stateful way without the need for a stream processor.

With this approach, PacketScope is useful in terms of detecting packet loss or latency

in a PISA-based networking environment, such as detecting the queuing loss as the

authors explain in their paper [79]. While PacketScope provides greater insight into

the packet flow within a switch, it does not have any vision or focuses on the inspection

of packets with respect to application-based classification.

 45

3.2.4. Deep Match

Deep Match [80] is a novel approach to exploit the packet inspection properties of a

PISA switch. The authors used P4 language to apply regular expression matches of

the Redis [81] packet payload and select the routing accordingly. While it’s one of the

first P4-based application layer inspection methods, this approach is limited to only

one specific type of P4-based network interface card. They did not generalize it for

any type of PISA switch and they only inspect the payload without combining the

telemetry headers.

3.3. Proposed System Architecture

Figure 10: Proposed System Architecture

The proposed system architecture in Figure 10 consists of 5 main components: PISA,

Stream Processor, Control Plane, and Data Plane Configuration.

PISA: Programmable Switch that can run multiple instances of different P4 code.

Data Plane
Configuration

(P4 Code)
Stream

ProcessorControl Plane

PISA

Incoming Flow Outgoing Flow

Application Level
Visibility

 46

Data Plane: The generated P4 code for specific monitoring/telemetry/DPI/NGFW

tasks. These P4 programs can be deployed according to specific task needs.

Control Plane: Programmable Switch related control plane engine to be placed. The

control plane is aware of Data plane drivers, can communicate with the underlying

switch according to the specific tasks. Although the proposed architecture supports

any application-specific task, from now on the architecture will be coupled with DPI

use case to make it easier to understand. This module is DPI-aware, which is fed from

the specific packet stream so that any decision to be made on the switch can be

controlled by examining the specific packets.

Stream Processor: The stream processor operates on the matching stream patterns

based on the decisions taken from data plane configuration. Specific telemetry tasks

can be offloaded to stream processor in order to decrease the workload over the switch

or vice versa. Workload trade-off between the stream processor and the switch is based

on the number of streams that match a specific monitoring task.

Application-Level Visibility and Control: Application-level visibility and control is

the component that actually identifies the types of applications based on their L4 to L7

properties, which is also called DPI.

In a typical DPI system, a server with network interfaces is running the DPI

application. There are two usage modes of DPI systems which are active and passive

DPI systems. In the passive mode, they are fed by mirror of the traffic and processes

 47

offline. On the other hand, active DPI systems fall within the whole traffic and are

supposed to process all the traffic piece by piece in real-time

In the proposed architecture, the PISA switch processes the packets in the network

layer, even can process the flows in the transport layer and co-operates with the stream

processor to identify the applications. This is the point where the aggregation-

disaggregation of high-performing PISA switch and application identification engines.

The PISA switch selects the minimal packets from the flows and forwards them to the

stream processor/DPI engine to identify the applications and generate the actions

among the predefined policies. The proposed architecture combines the power of PISA

and L7 application inspection/classification/processing/control features by designing

them together. The simulation results indicate that in the near future most of the

systems using application awareness will re-design their systems running on top of

PISA switches together with their redesigned applications as a stream processor.

The following algorithm explains our approach:

While packet -> in ingres buffer

 Extract telemetry headers

 Put in Flow-Keys Telemetry Headers

 If Flow Not in Flow-Table

Create flow in Flow-Table

 Else IF Flow-Packet-Count < 2

 48

 Put Payload in Flow-Packets with Flow-Keys in Flow-

Table

Continue

 Else

 Create telemetry header with INT-XD options

 Send Flow-Table in Flow-Keys to External Telemetry

The accurate accounting of the flows can also be done with P4 language.

The accounting of a flow should include the following information:

Considering the definition of the flow,

For every flow,

count

number of packets,

number of bytes,

flow start time,

flow end time,

in addition to that,

for TCP flows, TCP flags.

The P4 code on switch would combine the accounting information and send the rest

to the aggregator with following pseudo-code:

// Flow key registers

reg_src_ip = Register();

reg_dst_ip = Register();

reg_proto = Register();

 49

reg_l4 = Register();

// Flow statistics registers

reg_pkt_count = Register();

reg_byte_count = Register();

reg_time_start = Register();

reg_time_end = Register();

reg_flags = Register();

initialize_registers(hdr: PacketHeader, index: HashIndex, md: Metadata):

reg_src_ip[index] = hdr.src_ip;

reg_dst_ip[index] = hdr.dst_ip;

reg_proto[index] = hdr.proto;

reg_l4[index] = hdr.l4;

reg_pkt_count[index] = 1;

reg_byte_count[index] = length(hdr.ethernet) + hdr.ip_len

reg_time_start[index] = md.timestamp;

reg_time_end[index] = md.timestamp;

reg_flags[index] = hdr.tcp_flags;

with pkt = ingress.next_packet():

hdr = parse(pkt);

md = pkt.metadata;

index = hash({hdr.src_ip, hdr.dst_ip, hdr.proto, hdr.l4});

collision = hdr.src_ip != reg_src_ip[index]

|| hdr.dst_ip != reg_dst_ip[index]

|| hdr.proto

!= reg_proto[index]

|| hdr.l4

!= reg_l4[index]

if collision:

 50

// Export info and keep track of new flow

flow_record = { reg_src_ip[index],

reg_dst_ip[index],

reg_proto[index],

reg_l4[index],

reg_pkt_count[index],

reg_byte_count[index],

reg_time_start[index],

reg_time_end[index],

reg_flags[index] }

emit({hdr.ethernet, flow_record});

initialize_registers(hdr, index, md);

else:

// Update statistics of current flow

reg_pkt_count[index] += 1;

reg_byte_count[index] += length(hdr.ethernet) + hdr.ip_len

reg_time_end[index] = md.timestamp;

reg_flags[index] ||= hdr.tcp_flags;

This pseudo-code works as the preprocessor of the flow, extracts the required fields

and sends them to application layer stream processor for further processing.

Lastly, the traditional DPI systems have two operating modes:

• Inline

• Out-of-Band

In the inline mode, DPI systems are placed between the edge and core network, so that

the traffic is processed as the flow continues. This operating mode enables DPI to

 51

apply policies directly on the flow without requiring any other hardware. The biggest

disadvantage of this approach is that the DPI becomes the weakest link of the network,

it should be scaled at least as much as the aggregated sum of the traffic received from

the edges.

In Out-of-band mode, DPI acts like a simple traffic analyzing tool, it received the

traffic passively from a mirror port of a network aggregation device, collecting all the

traffic information and applying policies accordingly. In this mode, the biggest

challenge is policy application, as the traffic is not directly passing through the DPI, it

can only act on TCP traffic by sending TCP-resets to the source addresses, for

example, in order to apply a restricted access policy to a particular destination address

within the scope of the network. Other types of policy applications, such as bandwidth

restriction, quality-of-service changes etc., require control plane integration with the

underlying network device.

Our architecture also combines the benefits of inline DPI devices with the out-of-band

ones where the traffic is actively received on the switch, counted, and reported on the

aggregated external devices and the policies are actively applied as the events triggers

occur.

 52

3.4. Simulation Environment

Figure 11: Simulation Environment

In order to simulate the proposed architecture, the following components are built as

a development and simulation environment:

P4 Simulation Environment: This is the default simulation target for BMV2 PISA

switches, as shown in Figure 11, which includes Mininet by default and handles virtual

NIC creating, switch port allocation, connecting the switch port to host process, and

running the rest of the packet flow.

simple_switch_bmv2

P4 Simulation Enviorenment

m-veth-1 m-veth-2

out-veth-1 out-veth-2

Flow Generation
(Synthetic, Real)

Emitter

Application
Layer Stream

Processor

Final Result Switch Script
Control

DPI Decision Helper

update switch tables

Virtual Machine

 53

Virtual Machine: This is the default virtual machine, build programmatically with

Vagrant, developer friendly VM running environment based on Ubuntu 14.04

(ubuntu/trusty64) and several other necessary components.

Simple_switch_bmv2: BMV2 software switch, based on Python2.7

 m-veth-1 : Ingres mininet Switch Port
 m-veth-2 : Egres mininet Switch Port
 out-veth-1 : Ingrest Server Host Port
 out-veth-2 : Egres Server Host Port

Flow Generation: This is the controlled flow generation tool, written in Go. Synthetic

flows are created with Python, while real-flows are taken from Canadian Institute for

Cyber-Security [82] .

DPI: Deep Packet Inspection module written in Go, based on nDPI [83].

Emitter: Flow emitter that reads from the mirroring port, extracts metadata header

information written by Data-Plane and sends the rest of the packet for stream

processor. This module is also Apache-Spark aware; the final result of the telemetry

query is calculated by Emitter module.

Application Layer Stream Processor: The streaming processor for the rest of the

flows that match the final criteria for the expected output. In this simulation, we used

Apache-Spark as stream processor. The stream processor will be upgraded to Apache-

Flink for better performance and scalability.

 54

Switch Script Control: This script controls the switch tables in order to update the

relevant switch tables under control.

3.5. Example Use Case: Running DDoS Attack Simulation

The simulation setup is as shown in Figure 12:

Figure 12: DDoS Attack Simulation Setup

Using our Python script, the following synthetic traffic is generated:

30 seconds of normal traffic from the start to end.
15 seconds of attack traffic after 5. Second till 20. second

50 packets of normal network traffic per second
(srcIP = random, srcPort=Linux_ephemeral, dstIP = random, dstPort=80 type=TCP)
400 packets of DDoS Traffic for dstIP = 99.7.186.25, dstPort = 53, srcIP = random, srcPort =
Linux_ephemeral, type=UDP, DNS=ns-query)
 Total number of packets = 30 x 50 + 400 x 15 = 7.500 packet
Threshold for DDoS Detection = 100 random srcIP hitting one dstIP for the entire duration of
simulation.

Streaming Driver

PISA

Packets In

Stream Processor

Query Interface

Queries

L1

Output

Telemetry Packets

L2 LN

Queries

Simulation Core

Data Plane Driver

Packets Out

Query Partitioning

 55

Telemetry Query Decomposition

 ddos = (PacketStream(1)
 L1 .map(keys=('ipv4.dstIP', 'ipv4.srcIP'))
 L2 .distinct(keys=('ipv4.dstIP', 'ipv4.srcIP'))
 L3 .map(keys=('ipv4.dstIP',), map_values=('count',),
func=('set', 1,))
 L4 .reduce(keys=('ipv4.dstIP',), func=('sum',))
 L5 .filter(filter_vals=('count',), func=('geq', T))
 L6 .map(keys=('ipv4.dstIP',))
)

L1: extract dstIP, srcIP from the packet
L2: apply “distinct” on dstIP, srcIP pairs
L3: define “count” field for each distinct dstIP, srcIP value pairs
L4: appt “sum” on on field “count” for dstIP value only
L5: select the dstIP, count > Threshold value pair
L6: write the result

The execution of this query is controlled by the last parameter of config array

 queries = [ddos]
 config["final_plan"] = [(1, 32, 5)]

Parameter 1: Query id (which is given in PacketStream())
Parameter 2: Query Level (1-32, 32 is the finest query level on the packet)

Parameter 3: Query Execution Level on switch (L1 = query is only executed on switch
at first level, L5 = query is executed on switch)

Level - 1

Dataplane Queries:

for 10032
in
.map(keys=['count','ipv4.srcIP','ipv4.dstIP'],map_keys=(u'ipv4.dstIP
',), values=[], map_values=[], func=('mask', 32))
.map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[], values=[],
map_values=[], func=[])

Streaming Queries:

for 10032
in
 .map(lambda
((ipv4_dstIP,ipv4_srcIP)):((ipv4_dstIP,ipv4_srcIP)))

 56

 .distinct()
 .map(lambda ((ipv4_dstIP,ipv4_srcIP)):((ipv4_dstIP),(1)))
 .reduceByKey(lambda x,y: x+y)
 .filter(lambda ((ipv4_dstIP),(count)):((float(count)>=100)))
 .map(lambda ((ipv4_dstIP),(count)):((ipv4_dstIP)))

Level - 2

Data-plane Queries:

for 10032
in
 .Map(keys=['count', 'ipv4.srcIP', 'ipv4.dstIP'],
map_keys=(u'ipv4.dstIP',), values=[], map_values=[], func=('mask',
32))
 .Map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[],
values=[], map_values=[], func=[])
 .Distinct(keys=('ipv4.dstIP', 'ipv4.srcIP'))

Streaming Queries:

for 10032
in
 .map(lambda ((ipv4_dstIP,ipv4_srcIP)):
((ipv4_dstIP,ipv4_srcIP)))
 .map(lambda ((ipv4_dstIP,ipv4_srcIP)): ((ipv4_dstIP),(1)))
 .reduceByKey(lambda x,y: x+y)
 .filter(lambda ((ipv4_dstIP),(count)): ((float(count)>=100)))
 .map(lambda ((ipv4_dstIP),(count)): ((ipv4_dstIP)))

Level - 3

Data-plane Queries:

for 10032
in
 .Map(keys=['count', 'ipv4.srcIP', 'ipv4.dstIP'],
map_keys=(u'ipv4.dstIP',), values=[], map_values=[], func=('mask',
32))
 .Map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[],
values=[], map_values=[], func=[])
 .Distinct(keys=('ipv4.dstIP', 'ipv4.srcIP'))
 .Map(keys=('ipv4.dstIP',), map_keys=[], values=[],
map_values=['count'], func=('set', 1))

Streaming Queries:

 57

For 10032
in
 .map(lambda ((ipv4_dstIP,count)):
((ipv4_dstIP),(float(count))))
 .reduceByKey(lambda x,y: x+y)
 .filter(lambda ((ipv4_dstIP),(count)): ((float(count)>=100)))
 .map(lambda ((ipv4_dstIP),(count)): ((ipv4_dstIP)))

Level - 4

Data-plane Queries:

for 10032
in
 .Map(keys=['count', 'ipv4.srcIP', 'ipv4.dstIP'],
map_keys=(u'ipv4.dstIP',), values=[], map_values=[], func=('mask',
32))
 .Map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[],
values=[], map_values=[], func=[])
 .Distinct(keys=('ipv4.dstIP', 'ipv4.srcIP'))
 .Map(keys=('ipv4.dstIP',), map_keys=[], values=[],
map_values=['count'], func=('set', 1))
 .Reduce(keys=(ipv4.dstIP), values=(count), func=('sum',),
threshold=1)
 .Filter(prev_keys=('ipv4.dstIP',), filter_keys=[],
filter_vals=('count',), func=('geq', 100) src = 0)

Streaming Queries:

for 10032
in
 .map(lambda ((ipv4_dstIP,count)):
((ipv4_dstIP),(float(count))))
 .reduceByKey(lambda x,y: x+y)
 .filter(lambda ((ipv4_dstIP),(count)): ((float(count)>=100)))
 .map(lambda ((ipv4_dstIP),(count)): ((ipv4_dstIP)))

Level - 5:

Data-plane Queries:

for 10032
in
 .Map(keys=['count', 'ipv4.srcIP', 'ipv4.dstIP'],
map_keys=(u'ipv4.dstIP',), values=[], map_values=[], func=('mask',
32))

 58

 .Map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[],
values=[], map_values=[], func=[])
 .Distinct(keys=('ipv4.dstIP', 'ipv4.srcIP'))
 .Map(keys=('ipv4.dstIP',), map_keys=[], values=[],
map_values=['count'], func=('set', 1))
 .Reduce(keys=(ipv4.dstIP), values=(count), func=('sum',),
threshold=1)
 .Filter(prev_keys=('ipv4.dstIP',), filter_keys=[],
filter_vals=('count',), func=('geq', 100) src = 0)

Streaming Queries:

for 10032
in
 .map(lambda ((ipv4_dstIP,count)):
((ipv4_dstIP),(float(count))))
 .map(lambda ((ipv4_dstIP),(count)): ((ipv4_dstIP)))

Using the telemetry data, the following reduction in Table 2 is achieved:

Table 2 Reduction of Packets based on Telemetry Levels

Telemetry Level Outgoing Packets Incoming Packets

Level 1 7480 7500

Level 2 7018 7500

Level 3 5879 7500

Level 4 4 7500

Level 5 4 7500

Level 1: standard packet forwarding switch

Level 2: distinct srcIP, dstIP

Level 3: report distinct src, dst ip address list, and increment dstIp count by 1

Level 4: report distinct src, dst ip address list, and increment dstIp count by 1

and sum

Level 5: report distinct src, dst ip address list, and increment dstIp count by 1

and sum and apply threshold value

 59

CHAPTER 4

EXPERIMENTAL STUDY

4.1. Experiment-1: Application Identification Performance Improvement DPI

Application Classification on Mixed flow captures

Our hypothesis is that in order to identify an application in a packet, few bytes in a

flow should be enough to determine the type of application correctly [84], [85].

Keeping this in mind, we must first identify the session in a packet. This use case

demonstrates the performance improvement in DPI systems by eliminating the number

of packets by some factor.

Session Identification in an IP flow is based on two different IP sessions:

a. TCP Session

SrcIP, DstI, SrcPort, DstPort, TCPSeqNum

TCP Session Identification is based Source IP, Destination IP, Source Port Destination

Port and the TCP Sequence Number. The TCP session is established after the 3-way

handshake:

Source -> Destination (SYN+Seq #)

Destionation -> Source (SYN ACK+Seq #’)

Source -> Destination (ACK+Seq #’’)

After the last ACK of the source, Sequence Number is incremented for a flow in the

TCP session. Actually, it comes from the nature of TCP. It starts randomly and

 60

increments by the amount of the data transferred in each packet. Same is valid for ACK

number.

The packets that will be reduced should be the packets after this 3-way handshake

packets. In order to identify the flows, we will use the packet SYN ACK, and the

response to the third packet. In other words, the first two packets of the server (or

destination to source will be kept).

b. UDP Session

SrcIP, DstI, SrcPort, DstPort,

UDP is a connectionless protocol; there is no clear definition of a UDP session. Every

packet may create a flow independently. Basic identification for UDP flow consists of

Source IP, Destination IP, Source Port, and Destination Port. Since Source Port is

randomly allocated depending on the OS (which is called ephemeral ports), any flow

that is using the same source port is considered as the same UDP session.

4.2. Sample Packet Captures

In order to study the flow reduction, we used the sample captures from nDPI that is

used for verification of protocol identification. The capture files consist of 183 files,

containing more than one protocol in one capture file. 22 files that are too small for

reduction (having packets less than 2) are excluded from the study. 1 packet especially

crafted for testing invalid packet type is also excluded since we are interested in valid

packets, leaving us 160 packet captures.

In order to reduce the flow following pseudo-code is used:

network_packets = rdpcap(infile)
sessions = network_packets.sessions()

 61

for key in sessions:
 pktCount=0
 for pkt in sessions[key]:
 if (pktCount < 2):
 write(pkt, outfile)
 pktCount = pktCount + 1

In this code, sessions are extracted by the criteria, whether they are TCP or UDP

session. As mentioned earlier, for TCP sessions, 3-way handshake packets are

excluded from the session, whereas, for UDP sessions, there is no precondition to

exclude the packets. We use the 2nd packet of the 3-way handshake as the first packet

of the flow. We use the first packet after SYN ACK packet from server to the client as

the first packet of the flow.

After the extraction of sessions, nDPI sample classifier is used to classify the

application in each reduced capture by replaying the capture file on the switch.

A sample for OpenVPN is given below.

Table 3 Results for OpenVPN Traffic Reduction

Traffic Statistics for OpenVPN
Original Reduced

Ethernet bytes 64263 1392
Discarded bytes 0 0
IP packets 298 12
IP bytes 57111 1104
Unique flows 3 3
TCP Packets 95 4
UDP Packets 203 8
Max Packet size 1480 162
Packet Len < 64 98 11
Packet Len 64-128 73 0
Packet Len 128-256 101 1
Packet Len 256-1024 17 0
Packet Len 1024-1500 9 0
Packet Len > 1500 0 0
nDPI throughput 45.88 Kpps/75.49 Mb/sec 41.38Kpps/36.62 Mb/sec
Analysis begin 07/Jul/2016 18:22:26 07/Jul/2016 18:22:26
Analysis end 28/Aug/2016 00:55:09 28/Aug/2016 00:54:52
Traffic throughput 0.00 pps / 0 b/sec 0.00 pps / 0 b/sec
Traffic duration 4429962.500 sec 4429946.000 sec
OpenVPN Packets 298 4
OpenVPN Bytes 57111 356

 62

The following tables show the results of the experiment.

Table 4 Rates for Test Captures

! REDUCTION RATIO 82%
! REDUCTION FACTOR 5.5
! DETECTION RATE 84%

Table 5 Fully Detected Protocols from the capture files

 BYTES PACKETS DETECTION

STATUS

REDUCE

RATE

(%)

 ORG RDC ORG RD POS. NEG.
anydesk 2962572 767 6963 8 1 0 99,97
exe_download 734335 328 703 4 1 0 99,96
exe_download_as 542265 328 534 4 1 0 99,94
tor 3106096 3524 3859 42 4 0 99,89
whatsappfiles 467113 760 620 8 1 0 99,84
wireguard 791758 1576 2399 4 1 0 99,80
ps_vue 2242710 5184 1740 15 3 0 99,77
tls_long_cert 121969 380 182 4 1 0 99,69
ftp 1158196 3805 1192 12 3 0 99,67
quic-mvfst 408962 1414 353 2 1 0 99,65
git 76165 376 90 4 1 0 99,51
netflix 6323017 32776 6999 217 5 0 99,48
coap_mqtt 954917 5505 8516 51 3 0 99,42
dns-tunnel 80668 528 438 8 1 0 99,35
bitcoin 596362 4816 637 24 1 0 99,19
wa_video 998593 8587 1567 38 6 0 99,14
ssh 41738 401 258 4 1 0 99,04
quic_t51 589126 5664 642 4 1 0 99,04
quic-28 252865 2782 253 4 1 0 98,90
bittorrent_ip 519514 6512 479 8 1 0 98,75
skype-conf 44487 616 200 4 1 0 98,62
dns_exfiltr 80745 1149 300 4 1 0 98,58
instagram 3009247 47580 3443 122 7 0 98,42
tls_verylong_ce 23381 380 48 4 1 0 98,37
check_mk_new 22594 391 98 4 1 0 98,27
quic-mvfst-22 300063 5232 490 4 1 0 98,26
bad-dns-traffic 108542 1934 382 12 1 0 98,22
capwap 108037 2113 422 21 2 0 98,04
anyconnect-vpn 1088929 23234 3001 166 17 0 97,87
openvpn 64263 1392 298 12 1 0 97,83
webex 902823 19937 1580 223 6 0 97,79
bittorrent_utp 43553 979 86 4 1 0 97,75
facebook 31951 752 60 8 1 0 97,65
nintendo 357057 9156 1000 66 3 0 97,44
simple-dnscrypt 47340 1344 111 16 1 0 97,16
443-opvn 12677 380 46 4 1 0 97,00
Oscar 11090 352 71 4 1 0 96,83
google_ssl 9780 328 28 4 1 0 96,65
nest_log_sink 137036 4806 1000 60 3 0 96,49
modbus 9129 358 102 4 1 0 96,08
quic046 93697 3723 100 4 1 0 96,03
fix 145778 5858 1261 48 1 0 95,98
weibo 279507 11287 498 104 6 0 95,96
tls_esni_sni_b 16811 696 38 8 1 0 95,86
pps 2307979 104799 2557 243 4 0 95,46

 63

http-crash- 3544 168 9 2 1 0 95,26
smb_deletefile 33172 1660 101 4 1 0 95,00
WebattackXSS 4946124 248266 9374 2641 1 0 94,98
teams 1554287 78248 2817 267 15 0 94,97
dnp3 51786 2752 543 32 1 0 94,69
wechat 707438 43775 1672 287 15 0 93,81
s7comm 6580 408 55 4 1 0 93,80
telegram 374409 25197 1566 119 15 0 93,27
youtube_quic 198575 13389 289 12 2 0 93,26
1kxun 664361 45690 1439 297 16 0 93,12
bittorrent 312904 21595 299 74 1 0 93,10
ja3_lots_of1 7614 528 27 4 1 0 93,07
ja3_lots_of2 5396 380 11 4 1 0 92,96
wa_voice 187832 13276 736 76 11 0 92,93
viber 157311 12098 424 81 9 0 92,31
youtubeupload 130326 10358 137 12 1 0 92,05
dropbox 110884 9056 848 48 1 0 91,83
amqp 27354 2284 160 12 1 0 91,65
iphone 232616 21922 500 138 12 0 90,58
skype 708140 71068 3284 639 13 0 89,96
WebattackSQLinj 32264 3384 94 36 1 0 89,51
quic 360998 37893 518 34 4 0 89,50
hangout 3230 340 19 2 1 0 89,47
ssdp-m-search 1653 174 19 2 1 0 89,47
BGP_Cisco_hdlc 1305 144 14 2 1 0 88,97
dos_win98_smb_ 10055 1130 220 9 3 0 88,76
skype_unknown 537720 60508 2146 537 13 0 88,75
netbios 30922 3546 260 24 2 0 88,53
sip 51847 5966 112 11 3 0 88,49
whatsapp_l_call 223130 26502 1253 187 11 0 88,12
rx 29643 3641 132 18 1 0 87,72
6in4tunnel 43341 5326 127 26 5 0 87,71
android 143354 18809 500 167 14 0 86,88
ajp 7414 1020 38 10 2 0 86,24
quic_q46 21721 3028 20 4 1 0 86,06
quic_q50 20914 3048 20 4 1 0 85,43
ethereum 264111 39317 2000 260 2 0 85,11
malware 8625 1347 26 10 4 0 84,38
teamspeak3 2223 354 13 2 1 0 84,08
quic_q39 25625 4131 60 4 1 0 83,88
iec60780-5-104 12561 2034 147 24 1 0 83,81
whatsapp_login 32369 5963 93 19 7 0 81,58
whatsapp_voice_ 34319 6492 261 52 3 0 81,08
quic-mvfst-exp 27029 5272 30 4 1 0 80,50
netflowv9 14128 2832 10 2 1 0 79,95
ftp_failed 2132 476 18 4 1 0 77,67
smpp_in_general 1552 347 17 4 1 0 77,64
EAQ 26563 6732 197 82 2 0 74,66
upnp 10248 2928 14 4 1 0 71,43
fuzz-2020-02 158043 46445 366 125 3 0 70,61
quic-29 9746 3011 15 4 1 0 69,11
quic-24 8360 3029 15 4 1 0 63,77
zabbix 955 376 10 4 1 0 60,63
4in4tunnel 970 388 5 2 1 0 60,00
quic-27 13367 5664 20 4 1 0 57,63
quic-mvfst-27 13367 5664 20 4 1 0 57,63
quic_q46_b 7500 3239 20 4 1 0 56,81
fuzzing 32268 15422 131 81 3 0 52,21
mongodb 3388 1648 27 16 2 0 51,36

 64

mssql_tds 17172 8728 38 20 1 0 49,17
malformed_dns 6004 3096 6 4 1 0 48,43
quic-23 7671 3956 20 4 1 0 48,43
fuzz-2006 99986 53930 691 399 9 0 46,06
dnscrypt-v2-doh 230431 132987 577 136 1 0 42,29
skype_udp 459 278 5 3 1 0 39,43
teredo 3150 1980 24 14 1 0 37,14
quic_t50 8708 5664 12 4 1 0 34,96
smbv1 1365 895 7 4 1 0 34,43
diameter 2124 1488 6 4 1 0 29,94
websocket 561 428 5 4 1 0 23,71
steam 11516 10218 104 97 1 0 11,27
kerberos 30139 29412 77 75 4 0 2,41
encrypted_sni 2382 2382 3 3 1 0 0,00
tls-esni-fuzzed 2382 2382 3 3 1 0 0,00
4in6tunnel 2284 2284 4 4 1 0 0,00
mysql-8 463 463 4 4 1 0 0,00
ubntac2 1928 1928 8 8 1 0 0,00
filtered 21595 21595 74 74 1 0 0,00
dnscrypt-v1 321274 321274 608 564 2 0 0,00
WebattackRCE 210131 210131 797 797 2 0 0,00

Figure 13: Detected vs. Undetected Applications in Reduced Flow

 65

4.3. Experiment-2: TCP-based Application Identification

In the second experiment, we used the real captures from Canadian Institute for

Cybersecurity [82], namely the files in the dataset named “PCAP-01-12_0750-

0818”.

There are 69 files located in this dataset; each containing a real-world data capture that

contains data from a real DDoS attack along with different types of traffic. In the data,

there are multiple protocols in a flow which makes our life harder. In table 7, the

identification percentage comes from having multiple different protocols in a single

flow.

In order to see the effect of proposed method on TCP traffic, we extracted the TCP

streams and used the extracted streams to send to the simulation.

Following results are achieved:

Table 6 Rates for Real-life Captures Using only TCP Streams

! REDUCTION RATIO 97.88%
! REDUCTION FACTOR 47.16
! DETECTION RATE 95%

Table 7 TCP-based reduction results

FILE A B C
SAT-01-12-2018_0750.pcap 2 2 100%
SAT-01-12-2018_0751.pcap 3 3 100%
SAT-01-12-2018_0752.pcap 3 3 100%
SAT-01-12-2018_0753.pcap 4 3 75%
SAT-01-12-2018_0754.pcap 4 4 100%
SAT-01-12-2018_0755.pcap 4 4 100%
SAT-01-12-2018_0756.pcap 4 4 100%

 66

SAT-01-12-2018_0757.pcap 3 3 100%
SAT-01-12-2018_0758.pcap 1 1 100%
SAT-01-12-2018_0759.pcap 3 3 100%
SAT-01-12-2018_0760.pcap 5 4 80%
SAT-01-12-2018_0761.pcap 4 4 100%
SAT-01-12-2018_0762.pcap 4 4 100%
SAT-01-12-2018_0763.pcap 4 4 100%
SAT-01-12-2018_0764.pcap 4 4 100%
SAT-01-12-2018_0765.pcap 3 3 100%
SAT-01-12-2018_0766.pcap 3 3 100%
SAT-01-12-2018_0767.pcap 3 3 100%
SAT-01-12-2018_0768.pcap 4 4 100%
SAT-01-12-2018_0769.pcap 4 4 100%
SAT-01-12-2018_0770.pcap 4 4 100%
SAT-01-12-2018_0771.pcap 3 3 100%
SAT-01-12-2018_0772.pcap 4 3 75%
SAT-01-12-2018_0773.pcap 3 3 100%
SAT-01-12-2018_0774.pcap 1 1 100%
SAT-01-12-2018_0775.pcap 3 3 100%
SAT-01-12-2018_0776.pcap 4 4 100%
SAT-01-12-2018_0777.pcap 2 2 100%
SAT-01-12-2018_0778.pcap 5 5 100%
SAT-01-12-2018_0779.pcap 3 3 100%
SAT-01-12-2018_0780.pcap 4 4 100%
SAT-01-12-2018_0781.pcap 3 3 100%
SAT-01-12-2018_0782.pcap 5 4 80%
SAT-01-12-2018_0783.pcap 4 4 100%
SAT-01-12-2018_0784.pcap 5 5 100%
SAT-01-12-2018_0785.pcap 1 1 100%
SAT-01-12-2018_0786.pcap 4 3 75%
SAT-01-12-2018_0787.pcap 5 5 100%
SAT-01-12-2018_0788.pcap 7 6 86%
SAT-01-12-2018_0789.pcap 6 5 83%
SAT-01-12-2018_0790.pcap 5 5 100%
SAT-01-12-2018_0791.pcap 5 5 100%
SAT-01-12-2018_0792.pcap 6 5 83%
SAT-01-12-2018_0793.pcap 4 4 100%
SAT-01-12-2018_0794.pcap 5 4 80%
SAT-01-12-2018_0795.pcap 5 5 100%
SAT-01-12-2018_0796.pcap 5 5 100%
SAT-01-12-2018_0797.pcap 7 7 100%
SAT-01-12-2018_0798.pcap 5 5 100%
SAT-01-12-2018_0799.pcap 4 4 100%
SAT-01-12-2018_0800.pcap 5 5 100%
SAT-01-12-2018_0801.pcap 5 5 100%
SAT-01-12-2018_0802.pcap 4 4 100%
SAT-01-12-2018_0803.pcap 4 4 100%
SAT-01-12-2018_0804.pcap 4 4 100%
SAT-01-12-2018_0805.pcap 4 4 100%
SAT-01-12-2018_0806.pcap 3 3 100%
SAT-01-12-2018_0807.pcap 5 4 80%
SAT-01-12-2018_0808.pcap 6 5 83%
SAT-01-12-2018_0809.pcap 6 6 100%
SAT-01-12-2018_0810.pcap 5 5 100%
SAT-01-12-2018_0811.pcap 4 4 100%
SAT-01-12-2018_0812.pcap 3 3 100%
SAT-01-12-2018_0813.pcap 6 5 83%
SAT-01-12-2018_0814.pcap 7 6 86%
SAT-01-12-2018_0815.pcap 7 5 71%

 67

SAT-01-12-2018_0816.pcap 11 8 73%
SAT-01-12-2018_0817.pcap 33 31 94%
SAT-01-12-2018_0818.pcap 19 17 89%
A: #OF DETECTED PROTOCOLS IN TCP FLOW

B: #OF DETECTED PROTOCOLS IN REDUCED FLOW

C: DETECTION PERCENTAGE

Table 8 TCP-based Detection Applications and Reduction Rates

4.4. Experiment-3: Application Identification in full stream

In the final experiment, we treated the streams as is, sent them directly to the switch

including all TCP and UDP traffic. Following results are achieved:

Table 9 Rates for Real-life Captures Using Full Streams

! REDUCTION RATIO 84.73 %
! REDUCTION FACTOR 6.5
! DETECTION RATE 99.83 %

Table 10 Application Identification in Full Stream

APPNAME REDUCED

BYTES

ORIGINAL

BYTES

REDUCED

PACKET

ORIGINAL

PACKETS

REDUCTION

PERCENTAGE
AFP 75.888 142.848 136 256 46,88%
Amazon 222.810 3.539.200 1.892 10.959 93,70%
AmongUs 74.772 187.488 134 336 60,12%
Ayiya 70.308 167.400 126 300 58,00%
BitTorrent 264.492 566.928 474 1.016 53,35%
BJNP 110.484 223.200 198 400 50,50%
CAPWAP 110.484 225.432 198 404 50,99%
CiscoVPN 90.636 174.456 166 318 48,05%
Cloudflare 3.432 57.108 52 290 93,99%
COAP 205.344 429.660 368 770 52,21%

APPNAME REDUCED

BYTES

ORIGINAL

BYTES

REDUCED

PACKET

ORIGINAL

PACKETS

REDUCTION

PERCENTAGE
Amazon 49.814 3.358.944 752 9.755 98,52%
CiscoVPN 240 360 4 6 33,33%
Cloudflare 3.432 57.108 52 290 93,99%
FTP_CONTROL 9.612 27.816 146 428 65,44%
Google 556.515 42.745.086 7.630 124.991 98,70%
HTTP 796.644 17.120.664 11.256 59.213 95,35%
HTTP_Proxy 240 360 4 6 33,33%
ICMP 532 1.024 6 12 48,05%
Microsoft365 264 20.034 4 40 98,68%
MsSQL-TDS 2.640 3.600 44 60 26,67%
Playstation 240 360 4 6 33,33%
RDP 480 600 8 10 20,00%
SMBv23 8.700 11.868 144 196 26,69%
SSH 253.900 7.116.484 3.404 46.886 96,43%
Telnet 6.600 8.040 110 134 17,91%
TLS 223.754 16.014.962 2.808 35.013 98,60%
UbuntuONE 1.510 3.991.232 20 3.188 99,96%

 68

Collectd 94.860 180.792 170 324 47,53%
CPHA 149.544 305.784 268 548 51,09%
DHCP 188.802 575.730 355 1.259 67,21%
DHCPV6 6.178 238.728 42 1.624 97,41%
DNS 1.285.798 1.528.164 11.150 12.354 15,86%
Dropbox 118.296 232.128 212 416 49,04%
EAQ 162.936 363.816 292 652 55,21%
Facebook 78.980 83.836 804 848 5,79%
FTP_CONTROL 9.736 27.940 148 430 65,15%
Github 8.592 8.986 92 96 4,38%
GMail 20.928 704.538 192 4.458 97,03%
Google 2.274.505 44.542.510 23.970 142.071 94,89%
GoogleServices 115.472 2.215.516 964 9.062 94,79%
GTP 263.376 565.812 472 1.014 53,45%
H323 159.588 351.540 286 630 54,60%
HTTP 799.416 17.123.436 11.300 59.257 95,33%
HTTP_Proxy 3.132 3.252 52 54 3,69%
IAX 118.296 241.056 212 432 50,93%
ICMP 380.064 6.251.658 4.052 48.536 93,92%
ICMPV6 5.548 88.904 62 954 93,76%
Instagram 74.948 77.950 484 512 3,85%
IPsec 279.632 590.996 500 1.058 52,68%
IRC 95.976 213.156 172 382 54,97%
iSCSI 212.040 449.748 380 806 52,85%
Kerberos 48.228 124.116 90 226 61,14%
LDAP 94.860 249.984 170 448 62,05%
LinkedIn 15.346 17.774 144 168 13,66%
LISP 156.240 330.336 280 592 52,70%
LLMNR 149.644 304.968 282 588 50,93%
MDNS 213.722 678.891 416 2.023 68,52%
Megaco 46.872 103.788 84 186 54,84%
Memcached 8.052 15.864 18 32 49,24%
Microsoft 76.694 784.104 640 2.493 90,22%
Microsoft365 5.064 144.776 44 314 96,50%
MsSQL-TDS 2.640 3.600 44 60 26,67%
NetBIOS 134.656 300.524 248 582 55,19%
NFS 111.600 243.288 200 436 54,13%
NTP 54.684 112.716 98 202 51,49%
OpenVPN 105.024 224.436 190 404 53,21%
OSPF 21.368 880.742 228 9.307 97,57%
Playstation 75.012 167.760 138 306 55,29%
Radius 213.156 444.168 382 796 52,01%
RDP 110.964 221.568 206 406 49,92%
Reddit 9.332 10.292 88 96 9,33%
RemoteScan 190.836 379.440 342 680 49,71%
RTSP 45.756 100.440 82 180 54,44%
RX 8.928.188 25.862.372 16.002 46.350 65,48%
sFlow 131.688 280.116 236 502 52,99%
SIP 245.320 512.044 446 924 52,09%
SMBv1 1.458 16.524 6 68 91,18%
SMBv23 9.192 12.360 152 204 25,63%
SOCKS 64.092 141.096 122 260 54,58%
SOMEIP 386.136 850.392 692 1.524 54,59%
SSDP 169.968 230.160 418 766 26,15%
SSH 254.024 7.116.608 3.406 46.888 96,43%
Starcraft 90.396 196.416 162 352 53,98%
Syslog 128.340 262.260 230 470 51,06%
TeamViewer 116.064 247.752 208 444 53,15%
Telnet 7.080 8.520 118 142 16,90%

 69

Teredo 107.136 234.360 192 420 54,29%
TFTP 51.336 109.368 92 196 53,06%
TINC 100.440 223.200 180 400 55,00%
TLS 229.370 16.020.578 2.900 35.105 98,57%
Twitter 12.500 12.828 132 136 2,56%
UBNTAC2 106.020 233.244 190 418 54,55%
UbuntuONE 7.114 3.997.352 80 3.252 99,82%
VHUA 80.352 181.908 144 326 55,83%
Viber 686.340 1.487.628 1.230 2.666 53,86%
VMware 217.620 501.084 390 898 56,57%
Wikipedia 24.352 26.832 280 296 9,24%
WireGuard 112.716 255.564 202 458 55,90%
Xbox 229.896 510.012 412 914 54,92%
XDMCP 100.440 213.156 180 382 52,88%
YouTube 14.960 15.360 92 96 2,60%

4.5. Results and Discussion of the Experiments

The experimental study on the packet captures showed us that 2-packet reduction of a

flow is possible to identify a flow.

The decrease in detection rate Table 4 is mostly caused by TLS encryption, which

shows us that further study is needed to identify an encrypted flow. In addition to solve

the problem coming through encrypted traffic, an ML-based approach would be

implemented to succeed in the application identification of all flows. Based on the

results from “Table 5 Fully Detected Protocols from the capture files”:

• 125 out of 160 packet captures are correctly identified.

• 16 out of 160 packet captures could not be identified. Normally, 160 out of

160 packets would be identified correctly. 125 files identified correctly.

• 16 not identified at all (0 identification).

• 19 partially identified.

• 16 non-identified protocols are completely encrypted protocols.

• 125 identified protocols are mixed partially TLS and plain protocols.

• 19 partially identified protocols are mixed TLS and plain protocols partially.

 70

Detection Rate drops with the reduced flow in encrypted traffic. (i.e., as we reduce the

flow, we also lose important flow information that is needed for packet identification,

short flows). The reason for not identifying these packet captures is they are mostly

encrypted protocols, which require more than 2 packets to identify. We’ll expand the

experiments according to this.

In Experiment 2, the results in Table 6 showed that it is possible to increase the

detection rate while the reduction rate is also increased. This is due to the fact that

there are only 17 protocols detected in TCP streams, as indicated in Table 8 most of

them are not TLS-based protocols or can be identified without deep inspection of the

payload.

In Experiment 3, the results in Table 9 indicated that if we include UDP streams, the

accuracy even goes higher, but the reduction rate decreases. This behavior is expected

since the number of detected protocols in

Table 10 is 84, more than the number of applications detected in TCP streams, but the

number of packets in UDP streams is lower than the number of packets in TCP streams.

The decrease in reduction ratio is the result of the shorter flow size in UDP streams in

the capture file.

 71

CHAPTER 5

CONCLUSIONS

5.1. Main Conclusions

The main conclusion of this thesis is that application layer data processing can be

performed with PISA switches at the network layer. We do not always need complex

techniques to inspect the packets in L7; a simple flow-based packet reduction can

achieve significant accuracy to identify the flows and add application-level visibility

over the network. Data-stream processing combined with switch-level applications

helps us building strong networking applications, such as DDoS attack detection

mechanism. In-band Network Telemetry is in the central position of a programmable

switch that distinguishes and separates them from the traditional switches. The

proposed method constructs a Network Processor with a specific task from each PISA-

stream processor pair. In other words, by using a single PISA switch and tens of stream

processors with different features (DPI, NGFW, etc.) on different ports, our proposal

constructs a big traffic exchange fabric with dynamically attached Network Processors

of different types at a very low cost.

The result of this study demonstrates that the proposed system reduces the traffic load

of such systems by a factor of 5.5 to 47 times with acceptable application

identification. Applying ML-based approaches would increase the success rate of the

proposed system with a margin of throughput needed compared to the legacy systems.

 72

In addition, real traffic scenarios indicate that the performance gain would reach up to

a factor of 40 on average by using the statistics in [86].

The studies in the literature and our experimental studies demonstrated that PISA

switches are the glue for the SDN-NFV couple, increasing the performance of such

systems. One of the major problems of the NFV systems is the performance

bottleneck; however, the proposed solution also solves this problem for many use

cases.

5.2. Future Studies

Encrypted network traffic identification with P4 language is one of the main future

studies for this thesis, which is a very important topic for network security. In-band

Telemetry seems to be a good place to start this study, as it tells us about the

characteristics of a flow on a packet level. In this kind of analysis, AI/ML methods can

provide great help in defining the features of traffic.

Another future area of interest could be Digital Twins (DT) in Telecommunication

Networks. As PISA switches allow you to model the hardware in a software

environment, it would straight-forward to build a DT of a telecom operator which

needs to feed-forward the actual data and commands towards the active network.

73

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.

Azodolmolky, and S. Uhlig, “OpenFlow: Enabling Innovation in Campus

NetworksSoftware-defined networking: A comprehensive survey,” Proc.

IEEE, vol. 103, no. 1, pp. 14–76, 2015, doi: 10.1109/JPROC.2014.2371999.

[2] ETSI, “Network Functions Virtualization,” 2020. [Online]. Available:

https://www.etsi.org/technologies/nfv. [Accessed: 01-Dec-2020].

[3] K. Oztoprak, “fCDN:Geleceğin İletişim Dünyasında Enerji Verimli İçerik

Dağıtım Sistemleri,” J. Polytech., vol. 21, no. 4, pp. 999–1006, Oct. 2018, doi:

10.2339/politeknik.470675.

[4] K. Oztoprak, “mCSDN: A software defined network based content delivery

system with D2D contribution,” in 2016 12th International Conference on

Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-

FSKD), 2016, pp. 2053–2057, doi: 10.1109/FSKD.2016.7603497.

[5] M. Pais, P. Debois, G. Kim, J. Humble, M. Hashimoto, and J. Allspaw,

“Introducing DevOps to the traditional enterprise,” InfoQ.com, no. 14, p. 34,

2014.

[6] A. Henthorn-Iwane, “Why DevOps Is the Imperative Companion to SDN &

NFV.” [Online]. Available:

https://www.sdxcentral.com/articles/contributed/devops-sdn-nfv-imperative-

companion-alex-henthorn-iwane/2015/09/. [Accessed: 13-Oct-2020].

[7] S. Conroy, “History of Virtualization,” 2018. [Online]. Available:

74

https://www.idkrtm.com/history-of-virtualization/. [Accessed: 13-Oct-2020].

[8] E. Brewer and J. Lin, “Application modernization and the decoupling of

infrastructure services and teams,” 2019.

[9] R. Bauer, “What’s the Diff: VMs vs Containers,” 2018. .

[10] K. Lane, “Kubernetes vs. Docker: What Does it Really Mean?,” 2020.

[Online]. Available: https://www.sumologic.com/blog/kubernetes-vs-docker/.

[Accessed: 13-Oct-2020].

[11] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight

virtualization: A performance comparison,” Proc. - 2015 IEEE Int. Conf.

Cloud Eng. IC2E 2015, no. March, pp. 386–393, 2015, doi:

10.1109/IC2E.2015.74.

[12] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance

comparison of virtual machines and Linux containers,” in 2015 IEEE

International Symposium on Performance Analysis of Systems and Software

(ISPASS), 2015, pp. 171–172, doi: 10.1109/ISPASS.2015.7095802.

[13] S. Shirinbab, L. Lundberg, and E. Casalicchio, “Performance evaluation of

container and virtual machine running cassandra workload,” in 2017 3rd

International Conference of Cloud Computing Technologies and Applications

(CloudTech), 2017, pp. 1–8, doi: 10.1109/CloudTech.2017.8284700.

[14] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A Comparative Study

of Containers and Virtual Machines in Big Data Environment,” IEEE Int.

Conf. Cloud Comput. CLOUD, vol. 2018-July, no. July, pp. 178–185, 2018,

doi: 10.1109/CLOUD.2018.00030.

[15] “eBrief: The Impact of Edge Computing on the Data Center,” 2019. [Online].

Available: https://www.sdxcentral.com/resources/sponsored/ebriefs/ebrief-

75

the-impact-of-edge-computing-on-the-data-center/. [Accessed: 14-Oct-2020].

[16] T. Zhang, “NFV Platform Design: A Survey,” pp. 1–29, 2020.

[17] H. Dnerta, “Vendor Independent SDN Architecture Solution,” pp. 1–6, 2020.

[18] K. M. Sadique, R. Rahmani, and P. Johannesson, “Identity Management in

Internet of Things: A Software-Defined Networking Approach,” Lect. Notes

Electr. Eng., vol. 602, pp. 495–504, 2020, doi: 10.1007/978-981-15-0829-

5_48.

[19] G. Antichi and G. Rétvári, “Full-stack SDN: The next big challenge?,” SOSR

2020 - Proc. 2020 Symp. SDN Res., pp. 48–54, 2020, doi:

10.1145/3373360.3380834.

[20] S. Barguil, V. Lopez, and J. P. Fernandez-Palacios Gimenez, “Towards an

Open Networking Architecture,” 2020 24th Int. Conf. Opt. Netw. Des. Model.

ONDM 2020, pp. 12–14, 2020, doi: 10.23919/ONDM48393.2020.9133038.

[21] ETSI, “GS NFV-MAN 001 Network Functions Virtualisation (NFV);

Management and Orchestration,” Dec. 2014.

[22] L.F., “Open network automation platform,” 2020. [Online]. Available:

https://www.onap.org/. [Accessed: 22-Oct-2020].

[23] ETSI, “Open source MANO (OSM) project,” 2020. [Online]. Available:

https://osm.etsi.org/. [Accessed: 22-Oct-2020].

[24] Apache, “Open Baton: an open source Network Function Virtualisation

Orchestrator (NFVO) fully compliant with the ETSI NFV MANO

specification,” 2020. [Online]. Available: http://openbaton.org/. [Accessed:

22-Oct-2020].

[25] Cloudify, “Cloudify orchestration project portal,” 2020. [Online]. Available:

https://cloudify.co/. [Accessed: 22-Oct-2020].

76

[26] T. M. G.A. Carella, “Open baton: A framework for virtual network function

management and orchestration for emerging software-based 5G networks.”

[27] G. M. Yilma, Z. F. Yousaf, V. Sciancalepore, and X. Costa-Perez,

“Benchmarking open source NFV MANO systems: OSM and ONAP,”

Comput. Commun., vol. 161, no. July, pp. 86–98, 2020, doi:

10.1016/j.comcom.2020.07.013.

[28] A. Kapadia, “LF Networking: ‘Onboarding 5G CNFs with ONAP,’” 2020.

[Online]. Available:

https://www.youtube.com/watch?v=SPiLpYjedIU&list=RDCMUCfX55Sx5h

EFjoC3cNs6mCUQ&index=26&ab_channel=TheLinuxFoundation.

[Accessed: 14-Oct-2020].

[29] B. Koley, “The Zero Touch Network,” 2016.

[30] ETSI, “GS ZSM 007 - V1.1.1 - Zero-touch network and Service Management

(ZSM); Terminology for concepts in ZSM,” 2019.

[31] C. Benzaid and T. Taleb, “AI-Driven Zero Touch Network and Service

Management in 5G and Beyond: Challenges and Research Directions,” IEEE

Netw., vol. 34, no. 2, pp. 186–194, 2020, doi: 10.1109/MNET.001.1900252.

[32] G. Carrozzo, “5G Enabling Technologies and Autonomic Networking,” Wiley

5G Ref, no. Mohr 2015, pp. 1–23, 2020, doi:

10.1002/9781119471509.w5gref133.

[33] GSMA, “AI in Network Use Cases in China,” no. October, 2019.

[34] ETSI, “GR ZSM 005 V1.1.1 Zero-touch network and Service Management (

ZSM); Means of Automation,” 2020.

[35] ETSI, “GS ZSM 001 - V1.1.1 - Zero-touch network and Service Management

(ZSM); Requirements based on documented scenarios,” 2019.

77

[36] M. Bunyakitanon, X. Vasilakos, R. Nejabati, and D. Simeonidou, “End-to-

End Performance-Based Autonomous VNF Placement With Adopted

Reinforcement Learning,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 2,

pp. 534–547, 2020, doi: 10.1109/tccn.2020.2988486.

[37] A. Davis, J. Parikh, and W. E. Weihl, “EdgeComputing: Extending enterprise

applications to the edge of the internet,” Proc. 13th Int. World Wide Web

Conf. Altern. Track, Pap. Posters, WWW Alt. 2004, pp. 180–187, 2004, doi:

10.1145/1013367.1013397.

[38] S. M. George, J. D. Ferguson, A. W. Weimer, and C. A. Wilson, “Patent

Application Publication (10) Pub. No.: US 2004 / 0194691 A1,” 2004.

[39] M. Theimer and M. B. Jones, “Overlook : Scalable Name Service on an

Overlay Network Technical Report Microsoft Research Microsoft Corporation

One Microsoft Way Overlook : Scalable Name Service on an Overlay

Network,” no. April, 2002.

[40] A. u. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A Survey of

Mobile Cloud Computing Application Models,” IEEE Commun. Surv.

Tutorials, vol. 16, no. 1, pp. 393–413, 2014, doi:

10.1109/SURV.2013.062613.00160.

[41] L. B. Murali and N. Jayaveeran, “Cloud Computing – a buzz for IT Research,”

vol. XII, no. 0886, pp. 1327–1335, 2020.

[42] A. Reznik, “What is Edge?,” 2018. [Online]. Available:

https://www.etsi.org/newsroom/blogs/entry/what-is-edge. [Accessed: 22-Oct-

2020].

[43] Q. Pham et al., “A Survey of Multi-Access Edge Computing in 5G and

Beyond: Fundamentals, Technology Integration, and State-of-the-Art,” IEEE

78

Access, vol. 8, pp. 116974–117017, 2020, doi:

10.1109/ACCESS.2020.3001277.

[44] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward Edge Intelligence:

Multiaccess Edge Computing for 5G and Internet of Things,” IEEE Internet

Things J., vol. 7, no. 8, pp. 6722–6747, Aug. 2020, doi:

10.1109/JIOT.2020.3004500.

[45] I. Morris, “ETSI Drops ‘Mobile’ From MEC,” 2016. [Online]. Available:

https://www.lightreading.com/mobile/mec-(mobile-edge-computing)/etsi-

drops-mobile-from-mec/d/d-id/726273. [Accessed: 29-Oct-2020].

[46] E. Banks, “Software-Defined WAN: A Primer,” 2014. [Online]. Available:

https://www.networkcomputing.com/networking/software-defined-wan-

primer. [Accessed: 22-Oct-2020].

[47] S. Troia, L. M. M. Zorello, A. J. Maralit, and G. Maier, “SD-WAN: An Open-

Source Implementation for Enterprise Networking Services,” pp. 1–4, 2020,

doi: 10.1109/icton51198.2020.9203058.

[48] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards a

model-driven SDN controller architecture,” Proceeding IEEE Int. Symp. a

World Wireless, Mob. Multimed. Networks 2014, WoWMoM 2014, 2014, doi:

10.1109/WoWMoM.2014.6918985.

[49] L.F., “Open Daylight,” 2018. [Online]. Available:

https://www.opendaylight.org/. [Accessed: 22-Oct-2020].

[50] X. Wu, K. Lu, and G. Zhu, “A survey on software-defined wide area

networks,” J. Commun., vol. 13, no. 5, pp. 253–258, 2018, doi:

10.12720/jcm.13.5.253-258.

[51] H. Attak et al., “Guide to Security in SDN and NFV,” in Computer

79

Communications and Networks, 2017, pp. v–vii.

[52] A. Ali, R. Cziva, S. Jouët, and D. P. Pezaros, “{SDNFV}-Based {DDoS}

Detection and Remediation in Multi-tenant, Virtualised Infrastructures,” in

Computer Communications and Networks, Springer International Publishing,

2017, pp. 171–196.

[53] R. Tourani, A. Bos, S. Misra, and F. Esposito, “Towards security-as-a-service

in multi-access edge,” Proc. 4th ACM/IEEE Symp. Edge Comput. SEC 2019,

no. November, pp. 358–363, 2019, doi: 10.1145/3318216.3363335.

[54] NDN Consortium, “Named Data Networking,” 2020. [Online]. Available:

https://named-data.net/. [Accessed: 22-Oct-2020].

[55] T. Combe, W. Mallouli, T. Cholez, G. Doyen, B. Mathieu, and E. Montes de

Oca, “An SDN and NFV Use Case: NDN Implementation and Security

Monitoring,” pp. 299–321, 2017, doi: 10.1007/978-3-319-64653-4_12.

[56] X. Wu et al., “State of the art and research challenges in the security

technologies of network function virtualization,” IEEE Internet Comput., vol.

24, no. 1, pp. 25–35, 2020, doi: 10.1109/MIC.2019.2956712.

[57] P. Bosshart et al., “Forwarding Metamorphosis: Fast Programmable Match-

Action Processing in Hardware for SDN,” in SIGCOMM Comput. Commun.

Rev., 2013, vol. 43, no. 4, pp. 99–110, doi: 10.1145/2486001.2486011.

[58] C. Kim, “SLIDES: Programming The Network DataPlane: What, How, and

Why?,” Apnet, 2017.

[59] S. Y. Wang, H. W. Hu, and Y. B. Lin, “Design and Implementation of TCP-

Friendly Meters in P4 Switches,” IEEE/ACM Trans. Netw., vol. 28, no. 4, pp.

1885–1898, 2020, doi: 10.1109/TNET.2020.3002074.

[60] Y. Yan, A. F. Beldachi, R. Nejabati, and D. Simeonidou, “P4-enabled Smart

80

NIC: Enabling Sliceable and Service-Driven Optical Data Centres,” J. Light.

Technol., vol. 38, no. 9, pp. 2688–2694, 2020, doi:

10.1109/JLT.2020.2966517.

[61] C. Fernández, S. Giménez, E. Grasa, and S. Bunch, “A p4-enabled RINA

interior router for software-defined data centers,” Computers, vol. 9, no. 3, pp.

1–20, 2020, doi: 10.3390/computers9030070.

[62] R. Kundel et al., “OpenBNG: Central office network functions on

programmable data plane hardware,” Int. J. Netw. Manag., vol. n/a, no. n/a, p.

e2134, doi: 10.1002/nem.2134.

[63] P. Bosshart et al., “P4: Programming protocol-independent packet

processors,” Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014, doi:

10.1145/2656877.2656890.

[64] The P4 Language Consortium, “P4 16 Language Specification,” 2019.

[Online]. Available: https://p4.org/p4-spec/docs/P4-16-v1.2.0.html.

[65] “Getting started with P4 Language.” [Online]. Available:

https://p4.org/p4/getting-started-with-p4.html. [Accessed: 13-Feb-2021].

[66] Z. Hang, M. Wen, Y. Shi, and C. Zhang, “Programming protocol-independent

packet processors high-level programming (P4HLP): Towards unified high-

level programming for a commodity programmable switch,” Electron., vol. 8,

no. 9, 2019, doi: 10.3390/electronics8090958.

[67] The P4.org Working Group, “In-band Network Telemetry (INT) Dataplane

Specification,” The P4.org Applications Working Group, 2020. [Online].

Available: https://github.com/p4lang/p4-

applications/blob/master/docs/INT_v2_1.pdf. [Accessed: 22-Oct-2020].

[68] P. Parol, “P4 Network Programming Language—what is it all about?,” 2020.

81

[Online]. Available: https://codilime.com/p4-network-programming-language-

what-is-it-all-about/. [Accessed: 22-Oct-2020].

[69] A. Sgambelluri, F. Paolucci, A. Giorgetti, D. Scano, and F. Cugini,

“Exploiting Telemetry in Multi-Layer Networks,” pp. 1–4, 2020, doi:

10.1109/icton51198.2020.9203310.

[70] C. Kim et al., “In-band Network Telemetry (INT) Information Processing INT

Headers INT Header Types Handling INT Packets Header Format and

Location INT over any encapsulation On-the-fly Header Creation Header

Format Header Location and Format -- INT over Geneve Header Lo,” 2016.

[Online]. Available: https://p4.org/assets/INT-current-spec.pdf. [Accessed: 13-

Feb-2021].

[71] A. Sari, A. Lekidis, and I. Butun, “Industrial Networks and IIoT: Now and

Future Trends,” in Industrial IoT, Springer, 2020, pp. 3–55.

[72] M. Zaharia et al., “Apache Spark: A Unified Engine for Big Data Processing,”

Commun. ACM, vol. 59, no. 11, pp. 56–65, Oct. 2016, doi: 10.1145/2934664.

[73] Apache Foundation, “Apache Flink - Stateful Computations over Data

Streams.” [Online]. Available: https://flink.apache.org/. [Accessed: 13-Feb-

2021].

[74] K. Oztoprak, “End-to-end visibility for an operator in the middle of

Transformation,” vol. XX, no. December, pp. 1–7, 2019.

[75] K. Oztoprak, “Subscriber Profiling for Connection Service Providers by

Considering Individuals and Different Timeframes,” IEICE Trans. Commun.,

vol. E99.B, pp. 1353–1361, 2016, doi: 10.1587/transcom.2015EBP3467.

[76] K. Öztoprak, “Profiling subscribers according to their internet usage

characteristics and behaviors,” in 2015 IEEE International Conference on Big

82

Data (Big Data), 2015, pp. 1492–1499, doi: 10.1109/BigData.2015.7363912.

[77] S. Narayana et al., “Language-directed hardware design for network

performance monitoring,” SIGCOMM 2017 - Proc. 2017 Conf. ACM Spec.

Interes. Gr. Data Commun., pp. 85–98, 2017, doi: 10.1145/3098822.3098829.

[78] A. Gupta, N. Feamster, R. Harrison, J. Rexford, M. Canini, and W. Willinger,

“Sonata: Query-driven streaming network telemetry,” in SIGCOMM 2018 -

Proceedings of the 2018 Conference of the ACM Special Interest Group on

Data Communication, 2018, pp. 357–371, doi: 10.1145/3230543.3230555.

[79] R. Teixeira, R. Harrison, A. Gupta, and J. Rexford, “PacketScope: Monitoring

the packet lifecycle inside a switch,” SOSR 2020 - Proc. 2020 Symp. SDN

Res., pp. 76–82, 2020, doi: 10.1145/3373360.3380838.

[80] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. Dehon, and J. M.

Smith, “DeepMatch: Practical deep packet inspection in the data plane using

network processors,” Conex. 2020 - Proc. 16th Int. Conf. Emerg. Netw. Exp.

Technol., pp. 336–350, 2020, doi: 10.1145/3386367.3431290.

[81] Redis, “Redis open source (BSD licensed), in-memory data structure store,

used as a database, cache, and message broker,” 2021. .

[82] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. Ghorbani, “Developing

Realistic Distributed Denial of Service (DDoS) Attack Dataset and

Taxonomy,” 2019 Int. Carnahan Conf. Secur. Technol., pp. 1–8, 2019.

[83] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-source

high-speed deep packet inspection,” in 2014 International Wireless

Communications and Mobile Computing Conference (IWCMC), 2014, pp.

617–622, doi: 10.1109/IWCMC.2014.6906427.

[84] M. A. Yazici and K. Oztoprak, “Policy broker-centric traffic classifier

83

architecture for deep packet inspection systems with route asymmetry,” in

2017 IEEE International Black Sea Conference on Communications and

Networking (BlackSeaCom), 2017, pp. 1–5, doi:

10.1109/BlackSeaCom.2017.8277681.

[85] K. Oztoprak and M. A. Yazici, “A hybrid asymmetric traffic classifier for

deep packet inspection systems with route asymmetry,” in 2016 IEEE 35th

International Performance Computing and Communications Conference

(IPCCC), 2016, pp. 1–8, doi: 10.1109/PCCC.2016.7820616.

[86] P. Jurkiewicz, G. Rzym, and P. Boryło, “Flow length and size distributions in

campus Internet traffic,” Comput. Commun., vol. 167, pp. 15–30, 2021, doi:

10.1016/j.comcom.2020.12.016.

	3852431320b688a666c3390b94e7d2633cae8eb91b3caa4d2e0c55df2d0be5aa.pdf
	2021-03-23_140923.pdf
	Tuncel, YK, Master Thesis, Cankaya Univ_for_Thesis_Expert_Final_Review_v3.pdf

	3852431320b688a666c3390b94e7d2633cae8eb91b3caa4d2e0c55df2d0be5aa.pdf

