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ABSTRACT 

 

APPLICATION LAYER PROCESSING WITH PROTOCOL INDEPENDENT 

SWITCH ARCHITECTURE 

 

Tuncel, Yusuf Kürşat 

M.Sc., Department of Computer Engineering 

Supervisor       :  Assist. Prof. Dr. Roya CHOUPANI 

Co-Supervisor :  Assoc. Prof. Dr. Kasim ÖZTOPRAK 

 

February 2021, 98 pages 

 

This thesis investigates and proposes a solution for Protocol Independent Switch 

Architecture in order to process application layer data, enabling the inspection and 

processing of application content. Protocol Independent Switch Architecture (PISA) 

is a novel approach in networking where the switch does not run any embedded binary 

code for processing of network packets but rather an interpreted code written in a 

domain-specific language. The main motivation behind this approach is that 

telecommunication operators do not want to be locked in by a vendor for any type of 

networking equipment, develop their own networking code in a hardware environment 

that is not governed by a single equipment manufacturer. This approach also eases the 

modeling of equipment in a simulation environment as all of the components of a 

hardware switch run the same compatible code in a software modeled switch. The 

novel techniques in this thesis exploit the main functions of a programmable switch 

and combine the streaming data processor software to process application layer data 

to create the desired effect from a telecommunication operator perspective to lower 

down the costs, achieve desired performance and govern the network in a 

comprehensive manner. The results indicate that the proposed solution using PISA 

switches with a stream processor enables application visibility and control in an 
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outstanding performance. The experimental study indicates that without any 

optimization, the proposed solution increases the performance of application 

identification and control systems from 5,5 up to 47 times.  

 

Keywords: Software-Defined Networks, Protocol Independent Switch Architecture, 

Programmable Switches, P4, Virtualization, Cloud-Native, Stream Processor, Deep 

Packet Inspection 
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ÖZ 

 

PROTOKOLDEN BAĞIMSIZ AĞ ANAHTAR MİMARİSİ İLE UYGULAMA 

KATMANI İŞLEME 

 

Tuncel, Yusuf Kürşat  

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı 

Tez Yöneticisi           : Dr. Öğretim Üyesi Roya CHOUPANI 

Ortak Tez Yöneticisi : Doç. Dr. Kasım ÖZTOPRAK 

 

Şubat 2021, 98 sayfa 

 

Bu tez, uygulama katmanı verilerini işlemek ve bir uygulama içeriğinin incelenmesini 

sağlamak için Protokolden Bağımsız Anahtar Mimarisi için bir çözüm araştırır ve bir 

yöntem önerir. Protokolden Bağımsız Anahtar Mimarisi, ağ anahtarının herhangi bir 

gömülü ikili kod çalıştırmadığı, bunun yerine amaca özel bir dilde yazılmış 

yorumlanmış bir kod çalıştırdığı ağ iletişiminde yeni bir yaklaşımdır. Bu yaklaşımın 

arkasındaki ana motivasyon, telekomünikasyon operatörlerinin herhangi bir ağ 

ekipmanı türü için bir satıcıya kilitlenmek istememeleri, tek bir ekipman üreticisi 

tarafından yönetilmeyen bir donanım ekosisteminde kendi ağ kodlarını 

geliştirmeleridir. Bu yaklaşım aynı zamanda, bir donanım anahtarının tüm bileşenleri 

yazılımla modellenen bir anahtarda aynı uyumlu kodu çalıştırdığı için bir ekipmanın 

simülasyon ortamında modellemesini kolaylaştırır. Bu tezdeki yeni teknikler, 

programlanabilir bir anahtarın ana işlevlerinden yararlanarak, maliyetleri düşürmek ve 

ağı kapsamlı bir şekilde yönetmek için bir telekomünikasyon operatörü 

perspektifinden istenen etkiyi yaratarak akışlı veri işlemci yazılımını ağ anahtarı 

yazılımıyla birleştirmeyi amaçlamaktadır. Deneysel çalışma, herhangi bir 

optimizasyon yapılmadan önerilen çözümün uygulama tanımlama sistemlerinin 

performansını 5.5'ten 47 katına çıkardığını göstermektedir. 
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CHAPTER 1  

 

INTRODUCTION 

1.1. Introduction 

Rapid technology changes also affected operators in the telecommunication world. As 

an artifact of this dramatic change, the operators face several issues which are not 

limited to the following: i) Traffic is growing quick, ii) Capex and Opex tracking 

traffic growth and not declining fast enough, and iii) Revenue is flat or declining. All 

these changes threaten the viability of their business. Besides, they would not meet the 

enormous increase in traffic demand with traditional networking infrastructures and 

services. 

 

During the last two decades, desktop and server virtualization has played an active role 

in the Information Technology (IT) world. We are still in the middle of the 

transformation, while all parties have experienced the effect of better resource 

utilization and ease of usage. Similarly, when Openflow [1] was the first building 

block of the Software-Defined Networking (SDN) enabling communication with 

switches, most of the world was unaware of the birth of a revolution in the 

telecommunication world. The proposed solution was revisiting the early telephony 

networks with a clear separation of control and data planes. This is not surprising since 

almost all significant revolutions (e.g., ATM, MPLS, and so on) in the 

telecommunication world were revisiting original telephony networks' ideas to 



 

 2 

simplify network management with better service quality to optimize the costs in the 

operations.  

 

Contemporary to that progress, multiple government-funded projects started to 

simulate large networks through server infrastructure. Because of these efforts, 

controlling network devices is extended to controlling physical and hypervisor-based 

virtual network devices. Successfully separating the control plane and data plane by 

defining a communication protocol, the need for the intelligence aroused to perform 

the network wise decisions and enforce the determined communication protocol to 

harmonize the networking. This demand is met by introducing SDN controllers. 

 

The enormous progress in clarifying the picture in the control plane sped up the data 

plane's workings. The glue fulfilling the evolution in networking and SDN was the 

network virtualization to adapt itself to existing heterogeneous hardware. 

Contemporarily virtualization is considered, and Network Function Virtualization 

(NFV) is introduced to utilize the specialized networking boxes. ETSI thinks that SDN 

and NFV are complementary to each other [2]. NFV will allow the operators to replace 

the appliances for network functions such as firewalls, load balancers, and customer 

premises gateways by virtually delivering those services [3]. [4] is adding openness 

(mainly open source) as the third pillar to SDN and NFV.  

 

With the use of OpenFlow, SDN, and NFV, the network revolution has started. 

However, it did not mean much to the telecommunication operators because of the 

demands of their business. Something was missing in the picture to motivate them to 
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use, or at least the gaining from the new solutions did not get massive interest from 

them with their implementation of the services and architecture of their world. The 

operator world was designed to have vertical SILOs with their management domains, 

which is not practical since they would have tens of thousands of more devices than 

they had in the past.  

 

The operators' missing part in the transformation was the Policy Management and 

Orchestration systems with the capabilities of delivering new services and allocating 

resources dynamically upon the demand of the users and systems, and applying the 

policies defined by the operator. The need for an umbrella to enable harmonization 

between SILOs was evident by the operators. The operators realized the efforts of 

having such solutions. They started a series of projects to fill the missing part of the 

transformation in order to brighten the telecommunication world's future.  

 

As stated previously, telecommunication world is in a great transformation. The most 

important aspect of this transformation is to switch from old hardware-dependent, 

vertical architectures to software-defined architecture. In this architecture, there are 

series of improvements compared with the current products. Although the use of NFV 

was a key improvement in data plane with improved flexibility, Protocol Independent 

Switch Architecture (PISA) is one of the key elements with the accelerated 

performance and intelligent processing ability in the data plane during this change. 

The change in the architecture affects all stakeholders in a telecommunication operator 

infrastructure including applications. Legacy Applications written for legacy hardware 

are transformed into Software-defined architecture.  
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Independent from the Software Defined Architectures, application identification and 

control became critical in the last decade. It perched itself into the center of 

cybersecurity, accounting, quality of service management and similar services. One of 

the most important problems incurred by application identification is resource-hungry 

behavior of itself. Next-Generation Firewalls (NGFW) and Deep Packet Inspection 

(DPI) systems are two of the most popular usage area of application identification and 

control. DPI, as the name implies, inspects every packet that is running through the 

network deeply, and try to classify it under a human-readable name. It not only relies 

on packets metadata and header but also packet payload, hence the name “Deep”.  

 

While L4 (OSI Layer-4) provides valuable information about a packet, it cannot give 

us any clue about the payload. In order to that, packets must be inspected by 

maintaining the stateful information, and the payload must be constructed accordingly 

so that it can be classified correctly. With the help of L4 information, network-side 

security, such as stateful firewalls can be built. Similar to NGFWs processing packets 

in L7, DPI still needs to inspect at L7. With the emergence of SDN architecture, DPI 

vendors switched from hardware to software-based L7 DPIs. As they switch from 

hardware-dependent architecture to SDN-based architecture, they lack the proper 

scalability to match the actual line speed of the switches. While the capacities of the 

data backbone increase, the systems depending on application identification became 

the bottleneck of the infrastructure.  

 

As explained before, the network applications become Virtual Network Functions 

(VNF). Current software-based DPI systems (DPI VNFs) can scale up to 100 Gbps in 
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a Virtual Machine running on top of powerful hardware.  As the demand increases, the 

telecom operators will need application identification systems like NGFWs and DPI 

systems running with the speeds in the order of Tbps of traffic classification in real-

time and such as in a single instance of DPI. The performance gain arises from the fact 

that the classification operation starts at the switch-level code data plane and continues 

in the user-plane. 

 

1.2. Thesis Contribution 

In this thesis, we aimed to introduce the application layer processing capabilities of 

P4-based programmable switches and their usage in application layer processing. We 

investigated and proposed a solution for Protocol Independent Switch Architecture in 

order to process application layer data, enabling the inspection of application content 

and triggering an appropriate response. Protocol Independent Switch Architecture is a 

novel approach in networking where the switch does not run any embedded binary 

code but rather an interpreted code written in a purpose-specific language. The main 

motivation behind this approach is that telecommunication operators do not want to 

be locked in by a vendor for any type of networking equipment, develop their own 

networking code in a hardware environment that is not governed by a single equipment 

manufacturer and single code base. This approach also eases the modeling of 

equipment in a simulation environment as all of the components of a hardware switch 

run the same compatible code in a software model to help researchers develop their 

code and simulate it without access to actual P4 hardware. The novel techniques in 

this thesis exploit the main functions of a programmable switch and combine the 

streaming data processor for application layer data processing software to create the 
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desired effect from a telecommunication operator perspective to lower down the costs 

and govern the network in a comprehensive manner. 

 

In this study, it is aimed to display the change from SILO oriented legacy 

telecommunication services to the future of telecommunication systems, including 

subscriber-defined services with near real-time processing and very low delay and 

higher capacities without limitation to the access platform. Many researchers 

performed studies in the area of progress and effect of SDN and NFV partially [3], [4], 

[5–14] however, none of the studies present an end-to-end picture defining all aspects 

for an operator as well as defining the application layer processing of programmable 

switches. The study differs from the others by two critical elements: i) it covers the 

whole picture for an operator from an inside view of an operator, and ii) it presents the 

progress of all fields in the picture covering progress in the control plane (SDN), data 

plane (NFV, PISA and others), and evolution of software development culture with 

the improvements in orchestration and automation. The effect of programmable 

hardware and almost human-free operation is introduced and elaborated. Although the 

research and adaptation are spreading among the operators, most decision-makers and 

adapters are confused about what SDN is and what it will bring. There are also some 

PR efforts by some vendors, trying to position SDN as a magic pill to solve all the 

existing problems of the operators. Indeed, it would even increase the complexity of 

the issues without proper planning before production.  

 

This study proposes a solution using PISA switches with an application layer stream 

processor enabling application visibility and control in an outstanding performance. 



 

 7 

The proposed architecture processes the packets in a network switch while selecting 

only necessary ones to the L7 based systems such as DPI and NGFW. This approach 

increments the performance of NGFW and DPI systems in the order of 40 times. 

Building such flexible and scalable application visibility system is challenging. 

Achieving this goal brings a question: How network operators should design such 

solution processing packets in L7 knowledge with the performance of L4, in other 

words, they should figure out how to scale out such system for high volume of data in 

real-time? One will find out the answer to this question throughout this thesis.  

 

1.3. Thesis Organization 

Chapter 2 gives a background on the change in a Telecommunication operator world 

with the use of Software-Defined Networks and their application in 

Telecommunications networks in general. The literature summary points out that the 

change is not limited to a single improvement in SDN, rather than it depicts that it is a 

change in the culture of software development, architectural design, and approach to 

the subscribers affecting all the stakeholders of the telecommunication systems.  

Chapter 3 explains the proposed system architecture, bringing data plane performance 

into L7 systems (such as DPI and NGFW) by using our approach for the thesis. 

Chapter 4 discusses the experimental study, gives the results of the experimental study. 

Chapter 5 concludes the thesis by elaborating the results of this study together with the 

transformation of telecommunication systems. This part also points to the importance 

of the contribution of this study into the literature and telecommunication operator and 

their vendor ecosystem.   
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CHAPTER 2  

BACKGROUND 

2.1. Introduction 

Software-Defined Networks (SDN) and its practical applications draw great interest 

from researchers in the telecommunication field. SDN separates control and 

forwarding planes of a network and provides a centralized, simplified view for 

improved automation and orchestration of services. SDN controllers provide 

communication between network planes that have been separated by a networking 

device. NFV concentrates on the software dedicated to networking functions. NFV 

separates network services - including firewalls, content storage, name lookup, 

routing, and load balancing - from vendor equipment. Separated services can be 

executed in a virtualized environment to innovate and quickly provision services due 

to the cloud. This separation allows the flexibility of selecting/defining services for a 

subscriber forming chain of services which is called service function chaining (SFC).  

NVF ensures the network can seamlessly integrate with multiple virtualization 

technologies, particularly those that support multi-tenancy. 

 

Switches and routers are presented as white boxes that are made from off-the-shelf 

standard chipsets in an open market, compared to proprietary chipsets that are designed 

by an individual producer. Hence, networking software and protocols can be deployed 

and executed via SDN without the constraints of working with one particular 

equipment manufacturer’s proprietary restrictions. 



 

 9 

The research topic has numerous fields, as depicted in Table 1, that capture the main 

search areas in SDN. The topics in SDN draw enormous attention from 

telecommunication sector as a top area of interest. The reasons for this interest are 

going to be explained in the next section. 

 
Table 1 Keywords used to search in Google Scholar and Microsoft Academic, between 2016 

and 2020 as of November 2020. Keywords Google 

Scholar 

Microsoft Academic Type 

SND NFV (without quotes) 21100 3555 Main 
"SDN NFV" (with quotes) 8250 372 Main-Backup 
"Network Automation" 4900 283 Mixable 
"Edge Computing" 42200 10655 Mixable 
"Openflow" 25200 3524 Mixable 
"Cloud-Native" 5270 223 Mixable 
"DevOps" 17400 1541 Mixable 
"Zero Touch Network" 181 14 Single 
"P4 language". 859 51 Single 
"Edge Computing" SDN NFV 5260 214 Combined 
"Openflow" SDN NFV 8210 1520 Combined 
"Network Automation" SDN NFV 910 275 Combined 
"Cloud-Native" SDN NFV 676 214 Combined 
"DevOps" SDN NFV 689 1289 Combined 
Type field contains 5 types:  

Main and Main-Backup: Primary search terms, combined or separately. 

Mixable: Search term that can be used together with the main term. 

Single: Search term that cannot the used together with the main term. 

Combined: Search term combined with the main term. 

 

2.2. The Need for Change in the Telecommunication Sector 

Before discussing further details of SDN, NFV, and their impact, it would be better to 

define the current status and future expectations from an operator roughly.  As depicted 

in Figure 1, in a traditional operation, the operator's principal assets are the 

transmission infrastructure bringing the connectivity between the core cloud and the 

broadband access for the subscribers. Typically, the operators are hosting their 

compute infrastructure, mainly for hosting OSS, BSS systems, and some services 

through data centers in the core cloud. The subscribers are accessing communication 

services through broadband access, while an IP communication network forms the 
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backbone. The design is simple, and the only purpose of broadband access is to 

connect the subscribers to the services. The compute technologies provided by a 

conventional operator are aggregated into a few data centers. It is also possible to 

quantify the service delivered currently by such operators: i) broadband access 

bandwidth in 10s of Mbps with a typical latency around 100ms. The number of 

connected devices is around 10 Billion. The numbers will change dramatically in the 

order of 100x in the new era of telecommunication. The communication speed 

becomes in the order of Gbps while the latency is targeted to be 1 ms and 100s of 

Billions of connected devices.   

 

Figure 1: The Change in The Capacity Demand, Latency, and Services in the 
Telecommunication World 

 

Any comparison concentrated on the numbers' change will be an injustice to the new 

era of the telecommunication world, especially for the services. The researchers [3] 

summarize the value proposition of SDN and NFV technologies to the operator 

business as having; i) virtualized, programmable, and scalable networks, ii) automated 

provisioning and configuration, as well as centralized control and management, and 

iii) differentiated and agile services with simpler provisioning and higher revenue 

generation efficiently integrating into third-party systems.  
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The architecture of the operators will change slightly in the new era. The computing 

technology will shift from the core data centers towards the Edge as well as forming a 

new edge cloud through a new generation mobile access cloud beside the computing 

power. While the core cloud, IP backbone, and access will exist in their position, their 

structure will transform. First, the data centers will have extensions with enough 

computing power at the Edge delivering near real-time processing power, especially 

for systems with the need for low latency like autonomous devices, IoT, and caching 

the traffic intelligently to reduce the traffic load through the network. This also triggers 

the profile of the users accessing the services heavily from the people to the things. 

The new architecture conforms to the telecommunication world's catchword: 

distribute when you can, centralize when you must.  

 

Leading operators in the telecommunication world started to adopt SDN into their 

network to build a network infrastructure that will optimize costs and spin out new 

services faster than the current situation for their customers. NFV is the 

complementary technology in creating the target telecommunication architectures for 

SDN-NFV transformation.  

 

The change in the telecommunication systems is not limited to the infrastructure's 

architecture but mainly focuses on the way of approaching the subscribers. The 

systems are changing to be customer-oriented service-based systems rather than 

system-oriented subscription basis. This change in subscribers' approach ultimately 

needs end-to-end automation from service requests to delivery, including 

provisioning, maintenance, and service closure.  The adaptation of SDN and NFV is 
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transforming the networking and changing the culture and roles of people in the IT 

chain, and similar to what DevOps brought to software development and operation life 

cycle. Telecommunication networks are transforming to become a New Infrastructure 

paradigm than merely extending the Cloud by considering the evolving "Edge" 

demands. This shift is not limited to but includes the adaptation of edge computing, 

which becomes mandatory for 5G and IoT applications in real-time, as well as 

extending their edge to customer premises through SD-WAN. 

 

All these improvements are evolving together with advances in software development 

culture. The evolution of networking technologies is triggered by the progress in 

software development culture and information technologies. The building blocks 

enabling the transformation in the IT world are explored in the next section.   

 

2.3. Evolution of Information Technologies and Related Environments  

While the networks transform into software-driven, programmable, service-based 

infrastructures, the new paradigm should provide agility, scalability, and fully 

automated systems. Such phenomena in the world are always triggered by cultural 

changes in the way of doing the tasks. One of the most significant moves in this 

paradigm is the cultural change in application development, deployment, and 

maintenance and operating it in a new mindset.   

 

The movement from monolithic application development to microservices changed 

the structure of all stories. It started with the commencement of the cultural movement 

of application development named by Debois, P. as  DevOps [5]. Although there are 
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some formalized set of operational processes defining the workflow and relationship 

of service design, strategy, transition, operation, and continual service improvement 

like IT Infrastructure Library (ITIL), DevOps focuses on the productive collaboration 

of software developers and IT operation personnel by changing attitudes, processes 

and team interactions [6]. Unlike ITIL, there is no clear delineation in DevOps. It uses 

agile software development methodologies and applies them to automate all software 

lifecycle steps from development to deployment for operation. DevOps broke the 

burdens of traditional SILOs and brought agility into the whole application and 

operation lifecycle.  

 

2.3.1. VMs, Containers, Dockers, and Kubernetes 

Another significant movement affecting this phenomenon happens around 

virtualization technologies. The networking side's transformation has a tightly coupled 

relationship with the one on the server-side, especially in NFV. The story started at the 

Massachusetts Institute of Technology (MIT) for the MAC project, which stood for 

Mathematics and Computation [7]. The project's needs gave rise to developing the first 

time-sharing operating system (OS) to utilize all the computer resources.  

 

In the late 80s and early 90s, virtualization took the role of running a different 

operating system on top of a host OS to help the users for software compatibility. 

Although virtualization was to get the ability to run an application on other hardware 

platforms such as running windows (and its applications) on a mainframe 

environment, later, it turned out to be a resource utilization-oriented approach to lower 

the costs. In the late 90s, VMWare [8] became the flagship of computing resources' 



 

 14 

virtualization, including servers and desktops. Virtual desktop environments were 

another flavor of this progress in allowing the users to use a desktop running on the 

server-side, which simulates early time-sharing environments with a sophisticated 

graphical user interface. A generic VM architecture has a hypervisor controlling all 

the infrastructure resources to serve guest operating systems, as shown in Figure 2. 

Every virtual machine allocates separate memory and computes resources for its OS; 

thus, it should keep the copy of a packet for itself while processing, which is the reason 

for performance degradation. These performance problems and additional security 

concerns resulted in the development of containers.  

 

Figure 2: Virtual Machines Compared with Containers 

Unlike VMs, containers are built on a single operating system and managed by a 

container manager, as illustrated in Fig. 2. Shared components, among other 

containers, are read-only libraries. Container-based applications can be started in the 

order of seconds compared to a few minutes in VM-based applications. Containers 

increase the use of shared resources much higher than VMs, reducing private parts of 

resources. This nature of the containers makes them lightweight, resulting in higher 

granularity in a machine and higher performance than VMs.   
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There are some tools facilitating containers by allowing users to create, deploy, and 

run applications like Docker [9]. In addition to more accessible packaging support, it 

also has a clustering tool called Docker Swarm to schedule and orchestrate clusters of 

containers in different machines. Similarly, Kubernetes is developed at Google to 

automate the deployment, scheduling, and scaling of containerized applications and 

support many containerization tools such as Docker [10]. Later it has been donated to 

Cloud-Native Compute Foundation (CNCF) under the Linux Foundation as an open-

source project.  It is the de-facto standard in container orchestration with the 

capabilities of grouping containers into logical units allowing the systems to distribute 

containers into multiple physical nodes scaling up to enormous dimensions and load 

balancing. By using Kubernetes, the big data center owners or operators can run 

multiple instances of an application and independent upgrades and versioning. On the 

NFV side, container technology's effect transforms the VNFs into Container Network 

Functions (CNF).  

 

In comparison, while containers enable isolation of performance by managing the 

CPUs, memory, and similar resources, Docker allows easier control and packaging. 

On the other hand, Kubernetes stays at a higher level dealing with the composition of 

services, load balancing, naming the services, and controlling multiple versions of 

services (by enabling the versioning). Kubernetes handles all those and routes the tasks 

to the proper implementations. This ability at a higher level of orchestration allows the 

users to decouple operations from deployment to have a granular separation of the 

functions.  
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The researchers conducted several studies to demonstrate the performance comparison 

of virtual machines and container systems. [11] conducted a performance testing 

between Linux's kernel-based virtual machine (KVM), Docker, Linux Containers 

(LXC), and Cloud Operating System (OSv). The tests were performed on comparing 

CPU, Memory, Disk I/O, and Network I/O performance degradation from native 

usage. The container-based solutions (Docker and LXC) outperform VM-based 

solutions similar to the study of IBM research, in which they report similar results 

in[12]. Lately, the analysis compares in application domains, such as big data [7] using 

Spark, NoSQL environments [13] using Cassandra. Both studies show that container-

based solutions outperform virtual machine-based solutions with better resource 

utilization and scalability. In addition to performance, security is another concern in 

IT systems, as mentioned in [14] where container-based methods are evaluated more 

secure by minimizing attack vector compared to VM-based solutions.  

 

Although the change in the virtualization methods improves the performance of the 

systems, as can be seen from serious studies[11][12][14], the change in the 

virtualization is a revolution in; i) concentrating on the services rather than machines 

and structuring them as microservices, ii) dynamically managing services by scaling, 

updating, and co-operating multiple versions as needed, and iii) grouping the 

containers to simplify management, enable load balancing, high availability, and 

deployment. This different approach comes from containers' power in opening 

resource-efficient services quickly and retiring them similarly when the demand 

expires and maintains resource and security isolation between services.  
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2.3.2. Cloud-Native, Edge Computing, and Microservices 

The cultural change with DevOps processes brought agility, effective use of 

microservices architectures, and continuous integration and development (CI/CD) 

workflows. Containers became the best suitable implementation platform for those 

microservices-based, agile applications. This total change enhanced the applications 

to run in a cloud environment smoothly. Lately, the cloud-native term is widely used 

to define the applications and services capable of running in cloud environments. 

While cloud-native services focus on overall user experience and the companies' 

internal IT compliance, cloud-native services are focusing on delivering to the massive 

scale of applications. This nature simplifies cloud-native applications because of their 

small and stateless nature, which increases mobility and scalability. Cloud-native 

services span across the data centers, Edge, and user devices. A Cloud-native mindset 

is a key to leveraging compute at the Edge [15]. The architectures leverage the 

accountability for computing and communication while bringing intelligence towards 

the Edge.  

 

The customers' changing demands helped shift the focus of service providers from 

traditional virtualization-based data centers to simple, flexible, microservice-based 

cloud-native services using Linux containers [15]. This change allowed service 

providers to speed up the rapid development and deployment of new services to scale 

up and down upon changing demands and traffic patterns.  

2.3.3. Data Centers  

The data centers evolved in several generations. In the first generation, they aimed to 

optimize the cost of capital expenditures, mainly in hardware, by using virtualization. 
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The second generation of data centers, currently in use, uses public clouds, which frees 

enterprises to set up their physical systems. The business logic is still the same and 

manages all the systems remotely. The evolution from the first generation to the 

second generation can be summarized as changing from hardware to software-based 

data centers.  

 

The future generations will be server-less computing. In this generation, one does not 

deal with today's daily tasks such as OS configuration, load balancing, or patching 

systems, but only needs to deal with the computing capacity or services. The 

customers' objectives will be the quality of services throughput or latency of the 

applications or functions rather than several VMs or the amount of storage.  

 

Figure 3: Four features of a Next Generation Telecommunication System 

 

2.4. Expectations of the Operators 

The new demands from telecommunication systems and technological progress lead 

the telecommunication research community to prioritize new features for the target 

system designs. Figure 3 summarizes the four critical areas that the research is 

concentrating on.  
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In the past, most of the operators were only concentrating on the availability of the 

services. The box-oriented approach in telecommunication infrastructure resulted 

from this basic approach favoring simplicity. It was easier to implement a single 

application without considering integrating it into other systems. Availability is still 

the first expectation from a system to guarantee stability and design with security 

concerns.  An insecure platform is unavailable since someone else shares the platform's 

control with immediate access to the systems. The redesigned systems are trying to 

disaggregate the systems' parts to reduce the complexity of the systems that will also 

increase the availability. Disaggregation will be the key to improving availability. 

 

Although availability is crucial for the services' existence, there was limited 

manageability support of the box-oriented vertical systems. Manageability brings 

visibility to systems, without which the performance does not matter. Automation is 

the part or mutated form of management favoring agility while designing new services 

and quickly delivering service to a customer. Automation is crucial while it would 

reduce the flexibility in the availability by enforcing the systems to comply with some 

standards or way of doing their tasks, which would lead them to lose some 

functionalities or performance. 

 

The new drivers of technology increased the operators, and all kinds of providers' 

demands, squeezing them between the walls of needs and delivery. The traditional 

vendors were delivering new features or bug fixes in several months' even years 

according to their release cycles while the demands are evolving too fast. There is no 
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future with the conventional way of doing business, and all providers should adopt 

new services or upgrades within at most a couple of weeks to survive.  

With the burden of this evolution, the future of the integrated telecommunication world 

covering cloud, edge computing, and data centers, including cloud-native applications, 

services, and portability of them, will be built by using the open-source tools tightly 

integrating and orchestrating across containers. This evolution in open-source 

technologies shifting all communication systems into the next phase also requires 

some arrangements on compliance (regulations) and security protocols with being 

fully auditable to ensure providing acceptable service level and supporting common 

identity and access management, policy management, and a full range of service 

portability [16][17][18][19]. 

 

2.5. The Results of the Changes in the Operators 

The operators are developing their products to survive within the competitive 

environment in a "saturated market". This allows them to deliver -any feature, any 

time- reducing the service time of a new service or a new feature in a current product 

to almost zero while having it with incredibly cheaper costs. The operators are 

becoming part of open-source initiatives to have flexible and less expensive systems 

and assuring security across the network.  

 

Most of the open-source projects focus on either fiber or wireless access. In both 

product lines, while the intelligence was embedded in access equipment in the legacy 

products, it is taken out to the outside of the systems by disaggregation in the new 

telecommunication world, resulting in simple hardware with more sophisticated 
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software. This idea is supported further by transforming many monolithic applications 

such as eNB into disaggregated control and data units with network slicing support. 

One key in this journey is disaggregation, which requires a redesign of network HW 

and SW [20]. Disaggregation allows researchers to work with a smaller subset of a 

problem at a time, leading to a speed-up in innovation while helping the technology 

users optimize the resources they use (such as reducing the hardware usage). As a 

result, the network equipment evolved from a legacy black box to disaggregated 

programmable equipment with control-data plane separation. Cloud RAN is proposed 

to create a programmable world for 5G and its future successors. Its main aim is to 

reach optimized converged networks. The total target in the cloud RAN is to 

accommodate the expectation of future services. Several initiatives define the 

standards of cloud RAN, such as O-RAN, C-RAN, and X-RAN projects.  

 

Disaggregation in the systems triggered the consolidation of anything. Operators 

having mobile and wireline services will consolidate the control planes in a simple 

system. Simplification of user plane will allow operators to manage users as a single 

entity regardless of the subscription diversity to the services. The convergence in the 

control plane will let the operators define end-to-end network slicing and even defining 

a computing resource use service as a combination of cloud and edge computing 

resources.  

 

Several factors are forcing the operators to join this revolution. Although the cost of 

serving the customers seems to be the priority, it would not be fair to put it in the first 

place. A more important reason that should be noted is the time delay between 
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developing a new feature in the systems and putting it in production. Once the 

operators use the software-driven networking, it will help them deliver a new feature 

to all users almost within a week. Hence, it is evident that open source brings far faster 

deployment, updates, and innovations.  

 

To succeed in this movement, success should be demonstrated publicly. Hence, 

network operators publicly stating that they are transforming their networks into a 

platform for innovative services and build the "network as a platform" by using 

SDN/NFV/Cloud with disaggregation, open-source, white boxes to reduce Capex and 

Opex significantly [20]. More interestingly, those changes recall the saying by Sun 

Microsystems: "Network is the computer." This applies to our case now: "the 

operators' infrastructure is the computer."  

 

2.6. The Impact of Automation 

The final part completing the picture in a carrier-grade network is the coordinator 

working closely with the operation of the applications and services that generally run 

on the network and the underlying infrastructure. The industry uses the term 

orchestrator [15] to coordinate and manage all network and compute elements needed 

to deliver a virtualized network service, including provisioning.   

 

In 2014, ETSI ISG NFV published the standards for NFV related operations, 

interfaces, and functional points to conform to different requirements [21]. Several 

open-source products in NFV management and orchestration (MANO) solutions like 

ONAP [22], OSM [23], Open Baton [24], Cloudify [25], OPNFV [26] are at the 
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various stages of development, based on the released ETSI standards. The needs of an 

operator beyond the boundaries of NFV management. They need to automate service 

design and creation, service orchestration, inventory management, control loop 

automation, policy management, SDN controller orchestration, Hypervisor 

management, legacy system management and similar tasks.  

 

The most promising network automation software among the orchestrators, Open 

Network Automation Platform (ONAP) by Linux Foundation Networking, is almost 

becoming the de facto standard for the real brain of the whole infrastructure for an 

operator. Although OSM itself is owned by ETSI, the maintainer of the standard, it 

lacks critical features such as Kubernetes support, PNF integration, edge automation, 

real-time analytics, network slicing, data modeling, homing, scaling, and network 

optimization, as shown by a recent study [27]. 

 

To leverage the automation, Cloud-Native Architecture is critical. Figure 4 shows a 

brief difference between VM Architecture and Cloud-Native Architecture, as 

demonstrated by Kapadia [28]. The demonstrations aim to show how easy to onboard 

5G core and Next-Generation Firewall with Cloud-Native Network Functions (CNFs) 

using ONAP, OPNFV, and Kubernetes, along with the working demonstrations and 

end-to-end testing in a lab environment. 
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Figure 4: VM Architecture vs. Cloud-Native Functions 

 

Going one step further, zero-touch networking and service management (ZSM) is 

proposed to get high-level human intents to generate low-level configuration 

generation for low-level devices and controllers with validated results.  The main 

target of ZSM is to minimize the ratio of faults caused during human intervention. 

  

2.7. Zero-Touch Networking and Service Management 

There is a tradeoff in network operation between scalability, reliability, and efficiency. 

It is almost impossible to have all in the highest positive manner. This tradeoff results 

from an operator's basic requirements; i) enough capacity, ii) cheap infrastructure and 

operation, iii) high availability, and iv) rapid evolution to the changes. 

 

According to Koley [29], 70% of all telecommunication systems' faults occur while 

being touched through management systems. Moreover, response times of 

provisioning procedures for techniques that will increase with 5G, such as edge 

computing and network slicing, will be required to be in the order of milliseconds, 

which indicate that manual operation with a human touch is out of the question.  
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The change in the architectures of delivery and operation triggered a new concept in 

the automation of all telecommunication services covering the entire lifecycle of 

network operations, including planning, delivering, onboarding, monitoring, updating, 

and decommissioning of services beyond the initial installation [15] which is called 

Zero Touch Networking and Service Management (ZSM) by ETSI [30]. ZSM has been 

receiving attention in the last years in this context, with no complete existing solution. 

Most studies focus on the models that can benefit from ZSM [31], [32], [33]. ZSM 

proposes a solution trying to keep all three elements together positively with intent-

driven operation [34].  

 

The main target of ZSM is to get high-level human intents to generate low-level 

configuration generation for low-level devices and controllers with validated results.  

Koley [29] proposes a Zero Touch Networking model designed to keep two 

infrastructure knowledge models: The network model and the configuration model. 

The network model and Configuration model are different views of the same 

information as topology and configuration. Once a change occurs in any of the models, 

it is reflected in the other model.  

 

According to ETSI ZSM requirements based on documented scenarios [35], there are 

39 scenarios in 176 total scenario requirements.  One of the most challenging parts of 

these scenarios is called "Analytics & machine learning." Business requirements such 

as determining the root cause of a network anomaly and the ability to foresee network 

capacity exhaustion are few examples. To achieve these requirements, collecting a 

massive amount of historical and up-to-date network data and transferring it into a 
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sandbox environment for self-learning are also defined in functional requirements. 

Once the analytics and learning capabilities are developed, they will be used in closed-

loop automation. 

 

The ambition towards AI/ML-based solutions for complex problems such as 5G 

management is not always easy to achieve. According to Benzaid and Taleb [31], 

although AI is seen as a critical factor for lowering operational costs and reducing the 

risk of human error, potential limitations and risks exist in using AI techniques. The 

authors summarize these limitations in 4 topics: i) Lack of Datasets and Labeling, 

ii) AI Model Interpretability, iii) Training Time and Inference Accuracy, and iv) 

Computation Complexity.  

 

Similarly, the massive amount of telemetry data collected from network devices 

requires novel approaches and techniques to develop full-fledged, usable AI models. 

One of the most recent studies in this area [36], aims to solve the autonomous 

placement of Virtual Network Functions (VNFs) in 5G networks.  Instead of using 

Supervised Learning (SL) models, the researchers used a particular form of Adaptive 

Reinforcement Learning. They achieved prediction accuracy performance gain by 40-

45%, and overall VNF placement efficiency over against other SL benchmarks in 23 

scenarios out of 27. This particular technique decouples the AI model from the training 

nodes, whereas other SL models are tightly bonded to the training nodes.  
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2.8. The Shift in Edge Computing 

The term "edge computing" was first used by Akamai Technologies in 2002, which 

also holds a patent about it in 2004 [37]–[39]. In their context, edge computing was a 

particular methodology to deliver Java-based application content responsively to web-

browsers to improve user experience. 

 

The definition moved to Mobile Cloud Computing (MCC) after the popularity of 

Cloud Computing as a buzzword [40] [41]. MCC aimed to deliver content fast and 

efficiently to mobile users by using the infrastructure of the mobile operator or ad-hoc 

network created by the mobile users. Later, it is referred to as Mobile Edge Computing 

(MEC). A more recent and relevant definition from the chair of the MEC group of 

ETSI, Reznik, in the personal blog,  was "anything that's not a "data center cloud" [42]. 

 

The most incentive that drives MEC is the enormous size of data and the computing 

power that the devices have to handle with the emergence of 5G networks. Mobile 

Edge Computing is capable of leveraging mobile resources by hosting computing 

applications, processing vast volumes of data prior to cloud sending, delivering RAN 

(Radio Access Network) cloud computing services in the last mile to mobile users. 

The applications that are empowered by MEC require immediate real-time responses, 

including but not limited to autonomous driving, telemedicine, remote surgery, 

robotics in production and warehouses, logistics, and many others. According to a 

recent survey on this area [43], “there are three main types of MEC use cases: 

consumer-oriented services, operator and third-party services, and network 

performance and QoE improvements.” 
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The intelligence in Edge plays an important role in the delivery of services to 

consumers in close vicinity [44]. The researchers describe the transformation of MCC 

to MEC, stating the differences between the two and the driving forces of the 

transformation., which was renamed by ETSI as Multi-Access Edge Computing, 

dropping the “Mobile” part and extending the term to include fixed-mobile 

convergence [45]. The researchers provided a use-case for MEC to determine the 

proximity of a mobile user with the help of 5 different AI algorithms in comparison.  

 

Telecommunication systems are not limited to wireless communications. Hence the 

edge in the wireline systems spans towards the customer premises. SD-WAN is the 

logical extension to the SDN infrastructure of the operators to customer premises. The 

revolutionary change at the core and access triggered SD-WAN's evolution to fulfill 

the customer's picture.  The operators currently deliver simple L2 or L3 pipes as a VPN 

service with minimal traffic engineering support, mainly through their MPLS 

networks. The Edge in the future should support application-centric slicing and traffic 

engineering besides the current L2/L3 pipes. Another new improvement in the WAN 

side is Service Function Chaining (SFC).  

 

SD-WAN [46] is one of the enablers of hybrid cloud ecosystems combining on-

premise and cloud-based applications. SD-WAN solutions bring full flexibility to the 

customers' aggregating network functions from different vendors into a single box and 

enable the ease of access to the cloud. SD-WAN minimizes the need for MPLS 

between a central office and branch offices by using software-based techniques to 

reduce the need for high-speed connections, providing built-in packet-level security, 
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deduplication, and data caching [47]. The study also demonstrates an SD-WAN 

network example using open-source software, which is OpenDayLight [48] [49]. 

According to Wu et al., there are at least 960 patent applications as of late 2020 

containing SD-WAN as a keyword [50].  

 

SFC is not limited to the edge of the telecommunication systems. Actively using SDN 

and NFV allowed operators to define a workflow for any kind of customer data flow 

through SFC's help at the core of their infrastructure. The ability to define customized 

paths for any data flow reduces the need for resources since only the prescribed flows 

pass through any network function contrary to the current deployments. All data flows 

pass through all functions residing in scalability and high resource consumption 

problems.  

 

2.9. Next-Generation Security Services in Telecommunication Networks 

Modern problems require modern solutions. As the SDN/NFV enabled networks and 

operators emerge, customers' cybersecurity services will be shaped differently shortly.  

In the foreword of "Guide to Security in SDN and NFV, the foreword author raises 

concerns about security in the SDN-NFV era by complaining the German presses 

suspicions that it "could be a tool for evil network operators to manipulate traffic flows 

against the public interest." [51] On the other hand, with the rise of IoT devices and a 

massive amount of data to deal with, SDN could be the best way to prevent IoT-based 

Distributed Denial of Service (DDoS) attacks [52].  
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Providing security-as-a-service could be one of the ultimate goals of 

telecommunication networks. As the processing power of network devices increases, 

the security services are moving towards the Edge. In a recent study with an attractive 

title, "Towards security-as-a-service in multi-access edge" [53], authors "propose a 

data-centric SECurity-as-a-Service (SECaaS) framework for elastic deployment and 

provisioning of security services at the Multi-Access Edge Computing (MEC) 

infrastructure." Motivated by the rapid growth of the Industrial Internet of Things 

(IoT), autonomous driving, and smart home applications, and the shortcomings of 

security measures taken at the core network to secure the services, authors suggest a 

novel security architecture that should be offered at the near edge of the network for 

tenants with different requirements by using the Named Data Networks (NDN) 

architecture [54] [55]. 

 

To offer security services, the underlying system architecture should be robust and 

secure as much as possible. In a recent survey on SDN-NFV security [56], authors 

conclude that at least three central issues and potential research areas are popular: i) 

The performance impact of enhancing security in SDN-NFV networks, ii) The 

importance of detecting abnormal behavior within the layers by monitoring, and iii) 

The security issues related with OpenStack.  

 

2.10. Programmable Hardware 

While SDN is the first half of the journey towards the programmable world, 

programmable hardware will build a dynamic system wholly programmable. In recent 

research on this topic, the authors of [35] explain the need for programmable hardware 
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and the features of its’ language in three items: "i) Reconfigurability in the field: 

Programmers should be able to change the way switches process packets once they are 

deployed, ii) Protocol independence: Switches should not be tied to any specific 

network protocols, and iii) Target independence: Programmers should be able to 

describe packet-processing functionality independently of the underlying hardware's 

specifics.” 

 

2.10.1. Protocol Independent Switch Architecture (PISA) 

The research on programmable switches led to the definition of a reconfigurable 

match-action table (RMT) [57] based hardware that can be programmed with a 

domain-specific language. Protocol Independent Switch Architecture (PISA) is a 

special case of RMT, that supports P4 language as the default domain-specific 

language [58]. 

 

Figure 5: PISA Match-Action Table Processing Pipeline (Gupta et al., 2018) 
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A typical PISA switch consists of a programmable parser, ingress match-action table, 

a queue, a set of registers to keep the state of variable, egress match-action table and a 

programmable deparse as shown in Figure 5: PISA Match-Action Table Processing . 

 

The parser and deparser are programmed for processing any type of header, 

specifically user-defined ones. The ingress and egress pipelines are the actual packet 

processing units that go through match-action tables in stages. Match-action tables 

match the header based on a set of rules that are controlled by the control plane and 

perform the corresponding action on the packet. Actions use primitives to modify the 

non-persistent resources (headers or metadata) of each packet. 

 

2.10.2. P4 Language 

Although there are several studies developing and using programmable hardware 

[59]–[62] ,the early use of programmable hardware is to make ease of use of telemetry 

data.  Telemetry data is crucial for an automated future but generating telemetry data 

is not a trivial task. Adding more hardware and software to the routing and switching 

systems makes the current architecture more complex than ever. Since the telemetry 

data is generated at the packet level, the most logical way of doing this seems to be 

arising from the packet generating software at the hardware level, which leads us to 

P4, Programming protocol-independent Packet Processors, as called in the original 

paper defining it [63]. P4 is a domain-specific programming language for packet-

processing hardware such as a router, switch, network interface cards, and network 

function-related appliances that work and data plane based on the decisions from the 

control plane as in Figure 6. 
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Figure 6: P4 Architecture (Source: Adapted from [64] ) 

 

In a typical PISA switch, the execution of a P4 program is explained in Figure 7 (Hang 

et all.) which is summarized as the following steps: 

 

1) The user develops a P4 program, which can be any type of network function, such 

as router, firewall, load balancer or packet inspection switch. 

2) P4 compiler compiles the program as a JSON file and sends it to the switch, which 

can be a physical switch or a software model of it. 

3) The states of parser, match-parser, match-action tables, ingress, egress queue and 

deparser are controlled by P4 execution. 

4) The states of match-action tables are additionally controlled by control-plane with 

can change the behavior of the P4 code at runtime. 
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Figure 7: Pipeline execution in a P4-enabled switch (Hang et al., 2019) 

 

P4 programs ease the development of a network equipment code to a level that only 

128 lines are enough to build a simple IP switch with header validation [65]. Although 

the language itself is simple, there are other tools that emit P4 language code from 

another high-level language, such as the work done by the authors [66], P4HDL, which 

generates P4 code from a pseudo-code. 

 

2.10.3. In-band Telemetry with Programmable Switches 

The above three requirements to develop a programable hardware are not the only 

features addressed by P4. One of the most promising features of P4 arises in the 

telemetry. In-band Network Telemetry (INT) is defined in P4 language as one of the 

main applications [67]. Since P4 executes at the packet-processing level, it can rewrite 

every segment of the packet header, including the custom headers. This type of 

modification cannot be done in traditional statically programmed hardware-based 

network equipment.  P4 helps set up a data plane by using the packet headers 
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appropriately to collect even more information on the network's status than what we 

can determine using conventional methods [68].  

 

The idea behind INT is to collect telemetry metadata for each packet, including routing 

paths for the packet, entry and exit timestamps, the packets' latency, queue occupancy 

in a given node, use of egress port connections, and alike. These measurements can be 

produced by each network node and sent in the form of a report to the monitoring 

system. Another way to embed them in packets is to update them into allocated nodes 

at any node on the packet visits and connect them to the monitoring system. In a recent 

study, researchers used P4 INT experimental validation for telemetry-based 

monitoring applications on the multi-layer optical network switches [69].  Using the 

telemetry data and the integrated software around it, semi-automatic congestion 

control over optical network switches can be achieved with the currently available 

SDN/NFV systems. 

 

 

Figure 8: In-band Network Telemetry 

Although telemetry data can be collected in any way that is defined by P4 code, there 

are two types of telemetry that are defined in a standard P4 implementation [70]. As 

shown in Figure 8, telemetry data can be either embedded within a packet, which is 

Ethernet IP UDP INT Header INT Data INT Data Payload

Ethernet IP UDP INT Header INT Data INT Data

Embedded Telemetry Mode (INT-MD)

srcIP, srcPort = switch IP,Port 
dstIP, dstPort = Telemetry Server IP, Port
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called INT-MD, or extracted as a separate packet, called INT-XD. INT-MD is usually 

used by intermediate routers (switches to identify any type of problem that might occur 

along the path, which INT-XD is useful for external applications that don’t need the 

payload of the original packet. 

 

2.11. Real-time Data Streaming 

Real-time data streaming is shown to be beneficial for safety-critical networks by 

removing possible bottleneck situations at the data cumulation joints, such as the data 

aggregator switches at the industrial networks. In these networks, a possible delay in 

data would cause disastrous events, and data-streaming is a very good candidate 

solution as a remedy to this [71]. In the context of programmable switches, real-time 

data streaming is combined with telemetry in order to add application analytics, 

visibility, and troubleshooting features to a network stream. Apache Spark [72] and 

Apache Flink [73] are two of the most prominent software that is being used in 

streaming network telemetry data. 

2.12. Deep Packet Inspection (DPI) and Application Layer Visibility 

Deep Packet Inspection is important for telecommunication operators to gain more 

insight about the network and subscribers for revenue generation as well as cyber-

security. A series of research [74], [75], [76] made in this area by the same author 

showed that subscriber profiling based on application-level classification is critical for 

operators to increase the revenue and generate insight about the network. As the name 

implies, DPI inspects every packet with respect to the source, destination, header 

information, payload, and any other layer that is wrapped into it. Application layer 

visibility enables operators to distinguish between their subscribers and offer them 
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new subscription services accordingly. As the video content is on the rise, operators 

can offer subscribers based on their use of online video services, such as Netflix, 

Amazon Prime, or Hulu. In addition, DPI is a supportive tool in employing Lawful 

Intercept or applying some appropriate filters to the Internet access of children.  

 

2.13. Future Directions and Challenges in Telecommunication Networks  

Multiple transformations happening around us, the shift from VMs to container-based 

virtualization, improve the isolation, performance, and ease of operation, and bring a 

higher level of operations.  The transformation in networking moves from legacy 

networking concepts into SDN-NFV based flexible, dynamic, agile, and more 

straightforward operation. The orchestrators are bringing dynamic resource 

management, service provisioning, and yet to come zero-touch networking and service 

management. The mind map Figure 9 gives a brief explanation of the continuous 

transformation of the telecommunication systems. 
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Figure 9: Mind map for the Transformation of the Networks 

 

5G is a different business enabler for operators. It has different economics. It brings 

"programmable multi-access to the edge." This is an evolution in the access 

technologies where the operators are touching the customers through the Edge. 

Although 5G is promised to everyone by operators and governments, it is more 

important to start the services of 5G through any spectrum (4G) regardless of the 

spectrum. This allows the technology developers and operators to test their service 

while allowing the subscribers to see what is being promised in a nutshell. 
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One of the obvious things that are seen so far, because of the operators' low falling 

incomes, rather than competing in infrastructure installation, the countries will start to 

aggregate the infrastructures for active sharing among multiple operators. This active 

sharing will be more comfortable with the evolution of new technologies in the area 

allowing global telecommunication operators. There will be several operators 

delivering worldwide services by using automated systems. ONAP or similar network 

automation platforms will allow big players to access national infrastructures (legally) 

more easily.  

 

In the past, any startup or a big vendor was going into the market with their strong 

abilities in hardware design and delivery in the telecommunication world. However, 

this becomes useless while the transformation steps up. With software-defined 

networking, the performance of the computing systems will be determined by the 

communication protocols since it will limit the performance of the feature, rather than 

HW and SW. 

 

The above changes result from the evolution of the technologies. During the early 

times, we were talking about Information technologies. Later, this turned out to be on 

communication technologies. The future will be for Data Technologies. This 

convergence of the technologies shifted the focus of operators on Data Technologies 

to use AI and ML technologies effectively to increase the monetization from data 

processing such as subscriber data processing, capacity management, planning, or 

churn management.  
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Many projects are targeting the effect of AI and ML on telecommunication systems. 

While long-term tasks deal with availability and effectiveness, including network and 

operation planning and resource optimization in a planning perspective, short and 

medium-term tasks are related to real-time link scheduling, load balancing, and QoS 

(Quality of Service)/QoE (Quality of Experience) in the telecommunication world. In 

other words, while long-term tasks are more related to the management plane, medium 

and short-term tasks are more related to control and data planes.  

 

In addition to the demands of the edge computing requirements, the domination of the 

mobile network (similar to the wireline) with video and other time-sensitive 

applications are already forcing the operators to use fiber optic cables as the connection 

medium of the base stations. Besides, higher capacity demands and time sensitivity in 

applications will shorten the range and reduce the base stations' capacity, and the 

number of concurrent subscribers served through a base station. While everyone is 

talking about 5G and the evolution of mobile networks, it will increase the use of fiber 

optic cable penetration throughout the entire world. Conversely, going towards 5G will 

improve the profitability of wireline operators in contrast to their loss expectations.  

 

Networks and IT are converging; hence, the operation and planning teams shall also 

be planned accordingly. The new wave and inevitable trends will bring new standards 

for the telecommunication world to design the future as: i) Efficient Information 

Model for Data Collection, ii) Unified Flexible Interfaces, iii) Autonomous upgrade, 

and iv) Intend Driven Functionality Orchestration. Those aims require well-designed 
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architectures, interface specifications and agile development and open standards, even 

open-source systems.  

 

One of the main problems among telecommunication orchestration systems is the 

current developer who does not understand a carrier network's complexity. In the 

future, the operators will have software developers with extensive knowledge and 

experience in developing network applications, while the operation engineers having 

an in-depth understanding of networking. This trend will continue until the network 

automation and orchestration platforms reach their maturity level. Once they reach 

their maturity level, they will have built-in zero-touch networking and service 

management module which is already in a primitive era in itself. The rise of ZSM will 

reduce the need for any kind of operation staff in telecommunication world.  

 

Edge computing is one of the biggest differentiators for communication service 

providers than cloud operators or OTTs. It is built around the only point where they 

physically touch their customers while no one else can. This makes the Edge a unique 

differentiator for communication service providers and uses it as a critical component 

of their 5G and IoT strategy in the next area of innovation for building new business 

opportunities.  
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CHAPTER 3  

APPLICATION LAYER PROCESSING WITH P4 SWITCHES 

3.1. Introduction 

The transformation from legacy systems into software-defined architectures triggered 

the change in the hardware architectures. The demand for the change resulted in the 

development of PISA switches. The current state of the art in a PISA switch can scale 

up to 12.8 Tbps with a single ASIC/FPGA interface running with the speed of             

400 Gbps. After the introduction of PISA switches in production environment, the 

applications running in L4, such as Load Balancers, Volumetric DDoS attack 

detection, and prevention systems, port-based DNS applications are being ported into 

PISA switches.  

 

In this study, we aim to extend the use of PISA switches into L7 applications by 

designing a proper architecture. In the proposed architecture, by using PISA switches 

and its primary programming language, P4, an application-level traffic analyzing 

system is proposed in a software-based emulation environment. It’s basically 

combining L4 analytics of P4 architecture and L7 properties of the current state of the 

art in DPI or similar application layer packet processing systems. The proposed 

architecture can be used to build a brand-new NGFW or DPI, by eliminating the 

complexities arising from switch-dependent code. 
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3.2. Current State of the Art (SOTA) 

As of my knowledge, in the literature, the current SOTA in Programmable Switches 

consists of P4-based match-forward telemetry applications, stream processors and 

combination of these two techniques. Although there are many studies using P4 

switches with such applications, the following applications are the most popular ones 

in their category.  

 

3.2.1. Marple 

Marple [77]  is the first query language based on P4 language, in order to express 

packet matching tasks in a high-definition language, using functional constructs like 

filter, map, group by and zip. Marple targets PISA architecture software-only switches 

like BMV2 while also providing a simulation environment for switch pipeline. It aims 

to utilize the switch resources at minimum (i.e. memory and CPU) while providing 

streaming analytics capabilities at the switch level. Marple focuses mainly on packet-

level In-band Telemetry, aiming to solve issues like delay, jitter, TCP in-cast and load 

imbalance across network links. The motivation behind Marple is to allow changing 

needs of an operator, enable to express there are of interest in network-related 

problems without having to redesign of hardware to each different monitoring task. 

 

3.2.2. SONATA 

SONATA [78]  is a query-driven network telemetry system, based on P4 architecture 

and stream processor, deals with scalability issue by filtering the packets from the 

beginning before sending to stream processor for further operation. This approach 

comes with a trade-off between memory optimization in the data plane and losing 
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flexibility in stream processor. Sonata tries to solve this problem by utilizing a query 

partitioning method that splits the query into two parts: Data plane and stream 

processor. While stream processor queries consist of simple constructs such as sum, 

count and join, data plane operations include every metadata related extraction in L4 

properties of a packet. The focus is given to the data plane part, so that the query 

processing in stream processor decreases arbitrarily compared to classical methods, 

such as sending directly to stream processor. 

 

3.2.3. Packetscope 

PacketScope [79] is based on SONATA, which is a network telemetry system that lets 

to peek inside network switches to ask a suite of useful queries about how switches 

modify, drop, delay, and forward packets. It tries to eliminate the need for stream 

processor capabilities, mimic the operations of stream processor in a resource-limited 

environment, i.e., the switch itself. PacketScope expresses the queries by using tuples, 

converts the stream processor queries to tuple-based operations, and tags the packets 

as early as possible in the packet flow table of the P4 code, so that any packet-related 

metadata can be queried in a stateful way without the need for a stream processor. 

With this approach, PacketScope is useful in terms of detecting packet loss or latency 

in a PISA-based networking environment, such as detecting the queuing loss as the 

authors explain in their paper [79]. While PacketScope provides greater insight into 

the packet flow within a switch, it does not have any vision or focuses on the inspection 

of packets with respect to application-based classification. 
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3.2.4. Deep Match 

Deep Match [80] is a novel approach to exploit the packet inspection properties of a 

PISA switch. The authors used P4 language to apply  regular expression matches of 

the Redis [81] packet payload and select the routing accordingly. While it’s one of the 

first P4-based application layer inspection methods, this approach is limited to only 

one specific type of P4-based network interface card. They did not generalize it for 

any type of PISA switch and they only inspect the payload without combining the 

telemetry headers. 

 

3.3. Proposed System Architecture 

 

Figure 10: Proposed System Architecture 

 

The proposed system architecture in Figure 10 consists of 5 main components: PISA, 

Stream Processor, Control Plane, and Data Plane Configuration.  

 

PISA: Programmable Switch that can run multiple instances of different P4 code. 
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Data Plane: The generated P4 code for specific monitoring/telemetry/DPI/NGFW 

tasks. These P4 programs can be deployed according to specific task needs. 

 

Control Plane: Programmable Switch related control plane engine to be placed. The 

control plane is aware of Data plane drivers, can communicate with the underlying 

switch according to the specific tasks. Although the proposed architecture supports 

any application-specific task, from now on the architecture will be coupled with DPI 

use case to make it easier to understand. This module is DPI-aware, which is fed from 

the specific packet stream so that any decision to be made on the switch can be 

controlled by examining the specific packets. 

 

Stream Processor: The stream processor operates on the matching stream patterns 

based on the decisions taken from data plane configuration. Specific telemetry tasks 

can be offloaded to stream processor in order to decrease the workload over the switch 

or vice versa. Workload trade-off between the stream processor and the switch is based 

on the number of streams that match a specific monitoring task.  

 

Application-Level Visibility and Control: Application-level visibility and control is 

the component that actually identifies the types of applications based on their L4 to L7 

properties, which is also called DPI. 

In a typical DPI system, a server with network interfaces is running the DPI 

application. There are two usage modes of DPI systems which are active and passive 

DPI systems. In the passive mode, they are fed by mirror of the traffic and processes 
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offline. On the other hand, active DPI systems fall within the whole traffic and are 

supposed to process all the traffic piece by piece in real-time  

 

In the proposed architecture, the PISA switch processes the packets in the network 

layer, even can process the flows in the transport layer and co-operates with the stream 

processor to identify the applications. This is the point where the aggregation-

disaggregation of high-performing PISA switch and application identification engines.  

 

The PISA switch selects the minimal packets from the flows and forwards them to the 

stream processor/DPI engine to identify the applications and generate the actions 

among the predefined policies. The proposed architecture combines the power of PISA 

and L7 application inspection/classification/processing/control features by designing 

them together. The simulation results indicate that in the near future most of the 

systems using application awareness will re-design their systems running on top of 

PISA switches together with their redesigned applications as a stream processor.  

The following algorithm explains our approach: 

 

While packet -> in ingres buffer 

 Extract telemetry headers 

 Put in Flow-Keys Telemetry Headers 

 If Flow Not in Flow-Table 

Create flow in Flow-Table 

 Else IF Flow-Packet-Count < 2 
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  Put Payload in Flow-Packets with Flow-Keys in Flow-

Table 

Continue 

 Else 

  Create telemetry header with INT-XD options 

  Send Flow-Table in Flow-Keys to External Telemetry 

The accurate accounting of the flows can also be done with P4 language. 

The accounting of a flow should include the following information: 

Considering the definition of the flow, 

For every flow,  

count 

number of packets, 

number of bytes, 

flow start time, 

flow end time, 

in addition to that,  

for TCP flows, TCP flags. 

 

The P4 code on switch would combine the accounting information and send the rest 

to the aggregator with following pseudo-code: 

 

// Flow key registers 

reg_src_ip = Register(); 

reg_dst_ip = Register(); 

reg_proto  = Register(); 
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reg_l4  = Register(); 

 

// Flow statistics registers 

reg_pkt_count = Register(); 

reg_byte_count = Register(); 

reg_time_start = Register(); 

reg_time_end = Register(); 

reg_flags = Register(); 

initialize_registers(hdr: PacketHeader, index: HashIndex, md: Metadata): 

reg_src_ip[index] = hdr.src_ip; 

reg_dst_ip[index] = hdr.dst_ip; 

reg_proto[index] = hdr.proto; 

reg_l4[index] = hdr.l4; 

reg_pkt_count[index] = 1; 

reg_byte_count[index] = length(hdr.ethernet) + hdr.ip_len 

reg_time_start[index] = md.timestamp; 

reg_time_end[index] = md.timestamp; 

reg_flags[index] = hdr.tcp_flags; 

with pkt = ingress.next_packet(): 

hdr = parse(pkt); 

md = pkt.metadata; 

index = hash({hdr.src_ip, hdr.dst_ip, hdr.proto, hdr.l4}); 

collision = hdr.src_ip != reg_src_ip[index] 

|| hdr.dst_ip != reg_dst_ip[index] 

|| hdr.proto  

!= reg_proto[index] 

|| hdr.l4  

!= reg_l4[index] 

if collision: 
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// Export info and keep track of new flow 

flow_record = { reg_src_ip[index], 

reg_dst_ip[index], 

reg_proto[index], 

reg_l4[index], 

reg_pkt_count[index], 

reg_byte_count[index], 

reg_time_start[index], 

reg_time_end[index], 

reg_flags[index] } 

emit({hdr.ethernet, flow_record}); 

initialize_registers(hdr, index, md); 

else: 

// Update statistics of current flow 

reg_pkt_count[index] += 1; 

reg_byte_count[index] += length(hdr.ethernet) + hdr.ip_len 

reg_time_end[index] = md.timestamp; 

reg_flags[index] ||= hdr.tcp_flags; 

 

This pseudo-code works as the preprocessor of the flow, extracts the required fields 

and sends them to application layer stream processor for further processing. 

 

Lastly, the traditional DPI systems have two operating modes: 

• Inline 

• Out-of-Band 

In the inline mode, DPI systems are placed between the edge and core network, so that 

the traffic is processed as the flow continues. This operating mode enables DPI to 
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apply policies directly on the flow without requiring any other hardware. The biggest 

disadvantage of this approach is that the DPI becomes the weakest link of the network, 

it should be scaled at least as much as the aggregated sum of the traffic received from 

the edges. 

 

In Out-of-band mode, DPI acts like a simple traffic analyzing tool, it received the 

traffic passively from a mirror port of a network aggregation device, collecting all the 

traffic information and applying policies accordingly. In this mode, the biggest 

challenge is policy application, as the traffic is not directly passing through the DPI, it 

can only act on TCP traffic by sending TCP-resets to the source addresses, for 

example, in order to apply a restricted access policy to a particular destination address 

within the scope of the network. Other types of policy applications, such as bandwidth 

restriction, quality-of-service changes etc., require control plane integration with the 

underlying network device. 

 

Our architecture also combines the benefits of inline DPI devices with the out-of-band 

ones where the traffic is actively received on the switch, counted, and reported on the 

aggregated external devices and the policies are actively applied as the events triggers 

occur. 
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3.4. Simulation Environment 

 

Figure 11: Simulation Environment 

In order to simulate the proposed architecture, the following components are built as 

a development and simulation environment: 

 

P4 Simulation Environment: This is the default simulation target for BMV2 PISA 

switches, as shown in Figure 11, which includes Mininet by default and handles virtual 

NIC creating, switch port allocation, connecting the switch port to host process, and 

running the rest of the packet flow. 
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Virtual Machine: This is the default virtual machine, build programmatically with 

Vagrant, developer friendly VM running environment based on Ubuntu 14.04 

(ubuntu/trusty64) and several other necessary components. 

 

Simple_switch_bmv2: BMV2 software switch, based on Python2.7 

 m-veth-1 : Ingres mininet Switch Port 
 m-veth-2 : Egres mininet Switch Port 
 out-veth-1 : Ingrest Server Host Port 
 out-veth-2 : Egres Server Host Port 
 
 

Flow Generation: This is the controlled flow generation tool, written in Go. Synthetic 

flows are created with Python, while real-flows are taken from  Canadian Institute for 

Cyber-Security [82] . 

DPI: Deep Packet Inspection module written in Go, based on nDPI [83]. 

 

Emitter: Flow emitter that reads from the mirroring port, extracts metadata header 

information written by Data-Plane and sends the rest of the packet for stream 

processor. This module is also Apache-Spark aware; the final result of the telemetry 

query is calculated by Emitter module. 

 

Application Layer Stream Processor: The streaming processor for the rest of the 

flows that match the final criteria for the expected output. In this simulation, we used 

Apache-Spark as stream processor. The stream processor will be upgraded to Apache-

Flink for better performance and scalability. 
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Switch Script Control: This script controls the switch tables in order to update the 

relevant switch tables under control. 

 

3.5. Example Use Case: Running DDoS Attack Simulation 

The simulation setup is as shown in Figure 12: 

 

 

Figure 12: DDoS Attack Simulation Setup 

 

Using our Python script, the following synthetic traffic is generated: 

30 seconds of normal traffic from the start to end. 
15 seconds of attack traffic after 5. Second till 20. second 
 
50 packets of normal network traffic per second 
(srcIP = random, srcPort=Linux_ephemeral, dstIP = random, dstPort=80 type=TCP) 
400 packets of DDoS Traffic for dstIP = 99.7.186.25, dstPort = 53,  srcIP = random, srcPort = 
Linux_ephemeral, type=UDP, DNS=ns-query) 
 Total number of packets = 30 x 50 + 400 x 15 = 7.500 packet 
Threshold for DDoS Detection = 100 random srcIP hitting one dstIP for the entire duration of 
simulation. 
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Telemetry Query Decomposition 

    ddos = (PacketStream(1) 
 L1     .map(keys=('ipv4.dstIP', 'ipv4.srcIP')) 
 L2     .distinct(keys=('ipv4.dstIP', 'ipv4.srcIP')) 
 L3     .map(keys=('ipv4.dstIP',), map_values=('count',), 
func=('set', 1,)) 
 L4     .reduce(keys=('ipv4.dstIP',), func=('sum',)) 
 L5     .filter(filter_vals=('count',), func=('geq', T)) 
 L6     .map(keys=('ipv4.dstIP',)) 
        ) 

L1: extract dstIP, srcIP from the packet 
L2: apply “distinct” on dstIP, srcIP pairs 
L3: define “count” field for  each distinct dstIP, srcIP value pairs 
L4: appt “sum” on on field “count” for dstIP value only 
L5: select the dstIP, count > Threshold value pair 
L6: write the result 
 
 

The execution of this query is controlled by the last parameter of config array 

    queries = [ddos] 
    config["final_plan"] = [(1, 32, 5)] 

Parameter 1: Query id (which is given in PacketStream()) 
Parameter 2: Query Level (1-32, 32 is the finest query level on the packet) 

Parameter 3: Query Execution Level on switch (L1 = query is only executed on switch 
at first level, L5 = query is executed on switch) 

 

Level - 1 

Dataplane Queries: 

for 10032 
in 
.map(keys=['count','ipv4.srcIP','ipv4.dstIP'],map_keys=(u'ipv4.dstIP
',), values=[], map_values=[], func=('mask', 32)) 
.map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[], values=[], 
map_values=[], func=[]) 
 
 
 

Streaming Queries: 

for 10032 
in 
 .map(lambda 
((ipv4_dstIP,ipv4_srcIP)):((ipv4_dstIP,ipv4_srcIP))) 
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 .distinct() 
 .map(lambda ((ipv4_dstIP,ipv4_srcIP)):((ipv4_dstIP),(1))) 
 .reduceByKey(lambda x,y: x+y) 
 .filter(lambda ((ipv4_dstIP),(count)):((float(count)>=100 ))) 
 .map(lambda ((ipv4_dstIP),(count)):((ipv4_dstIP))) 
 

Level - 2 

Data-plane Queries: 

for 10032 
in 
 .Map(keys=['count', 'ipv4.srcIP', 'ipv4.dstIP'], 
map_keys=(u'ipv4.dstIP',), values=[], map_values=[], func=('mask', 
32)) 
 .Map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[], 
values=[], map_values=[], func=[]) 
 .Distinct(keys=('ipv4.dstIP', 'ipv4.srcIP')) 
 
 

Streaming Queries: 

for 10032 
in 
 .map(lambda ((ipv4_dstIP,ipv4_srcIP)): 
((ipv4_dstIP,ipv4_srcIP))) 
 .map(lambda ((ipv4_dstIP,ipv4_srcIP)): ((ipv4_dstIP),(1))) 
 .reduceByKey(lambda x,y: x+y) 
 .filter(lambda ((ipv4_dstIP),(count)): ((float(count)>=100 ))) 
 .map(lambda ((ipv4_dstIP),(count)): ((ipv4_dstIP))) 
 
 

Level - 3 

Data-plane Queries: 

for 10032 
in 
 .Map(keys=['count', 'ipv4.srcIP', 'ipv4.dstIP'], 
map_keys=(u'ipv4.dstIP',), values=[], map_values=[], func=('mask', 
32)) 
 .Map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[], 
values=[], map_values=[], func=[]) 
 .Distinct(keys=('ipv4.dstIP', 'ipv4.srcIP')) 
 .Map(keys=('ipv4.dstIP',), map_keys=[], values=[], 
map_values=['count'], func=('set', 1)) 
 

Streaming Queries: 
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For 10032 
in 
 .map(lambda ((ipv4_dstIP,count)): 
((ipv4_dstIP),(float(count)))) 
 .reduceByKey(lambda x,y: x+y) 
 .filter(lambda ((ipv4_dstIP),(count)): ((float(count)>=100 ))) 
 .map(lambda ((ipv4_dstIP),(count)): ((ipv4_dstIP))) 
 
  

Level - 4 

Data-plane Queries: 

for 10032 
in 
 .Map(keys=['count', 'ipv4.srcIP', 'ipv4.dstIP'], 
map_keys=(u'ipv4.dstIP',), values=[], map_values=[], func=('mask', 
32)) 
 .Map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[], 
values=[], map_values=[], func=[]) 
 .Distinct(keys=('ipv4.dstIP', 'ipv4.srcIP')) 
 .Map(keys=('ipv4.dstIP',), map_keys=[], values=[], 
map_values=['count'], func=('set', 1)) 
 .Reduce( keys=(ipv4.dstIP), values=(count), func=('sum',), 
threshold=1) 
 .Filter(prev_keys=('ipv4.dstIP',), filter_keys=[], 
filter_vals=('count',), func=('geq', 100) src = 0) 
 
 

Streaming Queries: 

for 10032 
in 
 .map(lambda ((ipv4_dstIP,count)): 
((ipv4_dstIP),(float(count)))) 
 .reduceByKey(lambda x,y: x+y) 
 .filter(lambda ((ipv4_dstIP),(count)): ((float(count)>=100 ))) 
 .map(lambda ((ipv4_dstIP),(count)): ((ipv4_dstIP))) 
 
  

Level - 5: 

Data-plane Queries: 

for 10032 
in 
 .Map(keys=['count', 'ipv4.srcIP', 'ipv4.dstIP'], 
map_keys=(u'ipv4.dstIP',), values=[], map_values=[], func=('mask', 
32)) 
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 .Map(keys=('ipv4.dstIP', 'ipv4.srcIP'), map_keys=[], 
values=[], map_values=[], func=[]) 
 .Distinct(keys=('ipv4.dstIP', 'ipv4.srcIP')) 
 .Map(keys=('ipv4.dstIP',), map_keys=[], values=[], 
map_values=['count'], func=('set', 1)) 
 .Reduce( keys=(ipv4.dstIP), values=(count), func=('sum',), 
threshold=1) 
 .Filter(prev_keys=('ipv4.dstIP',), filter_keys=[], 
filter_vals=('count',), func=('geq', 100) src = 0) 
 

Streaming Queries: 

for 10032 
in 
 .map(lambda ((ipv4_dstIP,count)): 
((ipv4_dstIP),(float(count)))) 
 .map(lambda ((ipv4_dstIP),(count)): ((ipv4_dstIP))) 
 
 

Using the telemetry data, the following reduction in Table 2 is achieved: 

Table 2 Reduction of Packets based on Telemetry Levels 

Telemetry Level Outgoing Packets Incoming Packets 

Level 1 7480 7500 

Level 2 7018 7500 

Level 3 5879 7500 

Level 4 4 7500 

Level 5 4 7500 

Level 1: standard packet forwarding switch 

Level 2: distinct srcIP, dstIP  

Level 3: report distinct src, dst ip address list, and increment dstIp count by 1 

Level 4: report distinct src, dst ip address list, and increment dstIp count by 1 

and sum  

Level 5: report distinct src, dst ip address list, and increment dstIp count by 1 

and sum and apply threshold value 
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CHAPTER 4  

EXPERIMENTAL STUDY  

4.1. Experiment-1: Application Identification Performance Improvement DPI 

Application Classification on Mixed flow captures 

Our hypothesis is that in order to identify an application in a packet, few bytes in a 

flow should be enough to determine the type of application correctly [84], [85]. 

Keeping this in mind, we must first identify the session in a packet. This use case 

demonstrates the performance improvement in DPI systems by eliminating the number 

of packets by some factor.  

Session Identification in an IP flow is based on two different IP sessions: 

a. TCP Session 

SrcIP, DstI, SrcPort, DstPort, TCPSeqNum 

TCP Session Identification is based Source IP, Destination IP, Source Port Destination 

Port and the TCP Sequence Number. The TCP session is established after the 3-way 

handshake: 

 

Source -> Destination (SYN+Seq #) 

Destionation -> Source (SYN ACK+Seq #’) 

Source -> Destination (ACK+Seq #’’) 

 

After the last ACK of the source, Sequence Number is incremented for a flow in the 

TCP session. Actually, it comes from the nature of TCP. It starts randomly and 
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increments by the amount of the data transferred in each packet. Same is valid for ACK 

number. 

The packets that will be reduced should be the packets after this 3-way handshake 

packets. In order to identify the flows, we will use the packet SYN ACK, and the 

response to the third packet. In other words, the first two packets of the server (or 

destination to source will be kept).   

 

b. UDP Session 

SrcIP, DstI, SrcPort, DstPort,  

UDP is a connectionless protocol; there is no clear definition of a UDP session. Every 

packet may create a flow independently. Basic identification for UDP flow consists of 

Source IP, Destination IP, Source Port, and Destination Port. Since Source Port is 

randomly allocated depending on the OS (which is called ephemeral ports), any flow 

that is using the same source port is considered as the same UDP session. 

 

4.2. Sample Packet Captures 

In order to study the flow reduction, we used the sample captures from nDPI that is 

used for verification of protocol identification. The capture files consist of 183 files, 

containing more than one protocol in one capture file. 22 files that are too small for 

reduction (having packets less than 2) are excluded from the study. 1 packet especially 

crafted for testing invalid packet type is also excluded since we are interested in valid 

packets, leaving us 160 packet captures. 

In order to reduce the flow following pseudo-code is used: 

network_packets = rdpcap(infile)  
sessions = network_packets.sessions() 
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for key in sessions: 
        pktCount=0 
        for pkt in sessions[key]: 
                if (pktCount < 2): 
                        write(pkt, outfile) 
                        pktCount = pktCount + 1 

 

In this code, sessions are extracted by the criteria, whether they are TCP or UDP 

session. As mentioned earlier, for TCP sessions, 3-way handshake packets are 

excluded from the session, whereas, for UDP sessions, there is no precondition to 

exclude the packets. We use the 2nd packet of the 3-way handshake as the first packet 

of the flow. We use the first packet after SYN ACK packet from server to the client as 

the first packet of the flow.  

 

After the extraction of sessions, nDPI sample classifier is used to classify the 

application in each reduced capture by replaying the capture file on the switch. 

A sample for OpenVPN is given below. 

Table 3 Results for OpenVPN Traffic Reduction 
 

Traffic Statistics for OpenVPN 
Original Reduced 

Ethernet bytes 64263 1392 
Discarded bytes 0 0 
IP packets 298 12 
IP bytes 57111 1104 
Unique flows 3 3 
TCP Packets 95 4 
UDP Packets 203 8 
Max Packet size 1480 162 
Packet Len < 64 98 11 
Packet Len 64-128 73 0 
Packet Len 128-256 101 1 
Packet Len 256-1024 17 0 
Packet Len 1024-1500 9 0 
Packet Len > 1500 0 0 
nDPI throughput 45.88 Kpps/75.49 Mb/sec 41.38Kpps/36.62 Mb/sec 
Analysis begin 07/Jul/2016 18:22:26 07/Jul/2016 18:22:26 
Analysis end 28/Aug/2016 00:55:09 28/Aug/2016 00:54:52 
Traffic throughput 0.00 pps / 0 b/sec 0.00 pps / 0 b/sec 
Traffic duration 4429962.500 sec 4429946.000 sec 
OpenVPN Packets 298 4 
OpenVPN Bytes 57111 356 
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The following tables show the results of the experiment. 

Table 4 Rates for Test Captures 

! REDUCTION RATIO 82% 
! REDUCTION FACTOR 5.5 
! DETECTION RATE 84% 

 

Table 5 Fully Detected Protocols from the capture files 

 BYTES PACKETS DETECTION 

STATUS 

REDUCE  

RATE 

(%) 

 ORG RDC ORG RD POS. NEG.  
anydesk 2962572 767 6963 8 1 0 99,97 
exe_download 734335 328 703 4 1 0 99,96 
exe_download_as 542265 328 534 4 1 0 99,94 
tor 3106096 3524 3859 42 4 0 99,89 
whatsappfiles 467113 760 620 8 1 0 99,84 
wireguard 791758 1576 2399 4 1 0 99,80 
ps_vue 2242710 5184 1740 15 3 0 99,77 
tls_long_cert 121969 380 182 4 1 0 99,69 
ftp 1158196 3805 1192 12 3 0 99,67 
quic-mvfst 408962 1414 353 2 1 0 99,65 
git 76165 376 90 4 1 0 99,51 
netflix 6323017 32776 6999 217 5 0 99,48 
coap_mqtt 954917 5505 8516 51 3 0 99,42 
dns-tunnel 80668 528 438 8 1 0 99,35 
bitcoin 596362 4816 637 24 1 0 99,19 
wa_video 998593 8587 1567 38 6 0 99,14 
ssh 41738 401 258 4 1 0 99,04 
quic_t51 589126 5664 642 4 1 0 99,04 
quic-28 252865 2782 253 4 1 0 98,90 
bittorrent_ip 519514 6512 479 8 1 0 98,75 
skype-conf 44487 616 200 4 1 0 98,62 
dns_exfiltr 80745 1149 300 4 1 0 98,58 
instagram 3009247 47580 3443 122 7 0 98,42 
tls_verylong_ce 23381 380 48 4 1 0 98,37 
check_mk_new 22594 391 98 4 1 0 98,27 
quic-mvfst-22 300063 5232 490 4 1 0 98,26 
bad-dns-traffic 108542 1934 382 12 1 0 98,22 
capwap 108037 2113 422 21 2 0 98,04 
anyconnect-vpn 1088929 23234 3001 166 17 0 97,87 
openvpn 64263 1392 298 12 1 0 97,83 
webex 902823 19937 1580 223 6 0 97,79 
bittorrent_utp 43553 979 86 4 1 0 97,75 
facebook 31951 752 60 8 1 0 97,65 
nintendo 357057 9156 1000 66 3 0 97,44 
simple-dnscrypt 47340 1344 111 16 1 0 97,16 
443-opvn 12677 380 46 4 1 0 97,00 
Oscar 11090 352 71 4 1 0 96,83 
google_ssl 9780 328 28 4 1 0 96,65 
nest_log_sink 137036 4806 1000 60 3 0 96,49 
modbus 9129 358 102 4 1 0 96,08 
quic046 93697 3723 100 4 1 0 96,03 
fix 145778 5858 1261 48 1 0 95,98 
weibo 279507 11287 498 104 6 0 95,96 
tls_esni_sni_b 16811 696 38 8 1 0 95,86 
pps 2307979 104799 2557 243 4 0 95,46 
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http-crash- 3544 168 9 2 1 0 95,26 
smb_deletefile 33172 1660 101 4 1 0 95,00 
WebattackXSS 4946124 248266 9374 2641 1 0 94,98 
teams 1554287 78248 2817 267 15 0 94,97 
dnp3 51786 2752 543 32 1 0 94,69 
wechat 707438 43775 1672 287 15 0 93,81 
s7comm 6580 408 55 4 1 0 93,80 
telegram 374409 25197 1566 119 15 0 93,27 
youtube_quic 198575 13389 289 12 2 0 93,26 
1kxun 664361 45690 1439 297 16 0 93,12 
bittorrent 312904 21595 299 74 1 0 93,10 
ja3_lots_of1 7614 528 27 4 1 0 93,07 
ja3_lots_of2 5396 380 11 4 1 0 92,96 
wa_voice 187832 13276 736 76 11 0 92,93 
viber 157311 12098 424 81 9 0 92,31 
youtubeupload 130326 10358 137 12 1 0 92,05 
dropbox 110884 9056 848 48 1 0 91,83 
amqp 27354 2284 160 12 1 0 91,65 
iphone 232616 21922 500 138 12 0 90,58 
skype 708140 71068 3284 639 13 0 89,96 
WebattackSQLinj 32264 3384 94 36 1 0 89,51 
quic 360998 37893 518 34 4 0 89,50 
hangout 3230 340 19 2 1 0 89,47 
ssdp-m-search 1653 174 19 2 1 0 89,47 
BGP_Cisco_hdlc 1305 144 14 2 1 0 88,97 
dos_win98_smb_ 10055 1130 220 9 3 0 88,76 
skype_unknown 537720 60508 2146 537 13 0 88,75 
netbios 30922 3546 260 24 2 0 88,53 
sip 51847 5966 112 11 3 0 88,49 
whatsapp_l_call 223130 26502 1253 187 11 0 88,12 
rx 29643 3641 132 18 1 0 87,72 
6in4tunnel 43341 5326 127 26 5 0 87,71 
android 143354 18809 500 167 14 0 86,88 
ajp 7414 1020 38 10 2 0 86,24 
quic_q46 21721 3028 20 4 1 0 86,06 
quic_q50 20914 3048 20 4 1 0 85,43 
ethereum 264111 39317 2000 260 2 0 85,11 
malware 8625 1347 26 10 4 0 84,38 
teamspeak3 2223 354 13 2 1 0 84,08 
quic_q39 25625 4131 60 4 1 0 83,88 
iec60780-5-104 12561 2034 147 24 1 0 83,81 
whatsapp_login 32369 5963 93 19 7 0 81,58 
whatsapp_voice_ 34319 6492 261 52 3 0 81,08 
quic-mvfst-exp 27029 5272 30 4 1 0 80,50 
netflowv9 14128 2832 10 2 1 0 79,95 
ftp_failed 2132 476 18 4 1 0 77,67 
smpp_in_general 1552 347 17 4 1 0 77,64 
EAQ 26563 6732 197 82 2 0 74,66 
upnp 10248 2928 14 4 1 0 71,43 
fuzz-2020-02 158043 46445 366 125 3 0 70,61 
quic-29 9746 3011 15 4 1 0 69,11 
quic-24 8360 3029 15 4 1 0 63,77 
zabbix 955 376 10 4 1 0 60,63 
4in4tunnel 970 388 5 2 1 0 60,00 
quic-27 13367 5664 20 4 1 0 57,63 
quic-mvfst-27 13367 5664 20 4 1 0 57,63 
quic_q46_b 7500 3239 20 4 1 0 56,81 
fuzzing 32268 15422 131 81 3 0 52,21 
mongodb 3388 1648 27 16 2 0 51,36 
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mssql_tds 17172 8728 38 20 1 0 49,17 
malformed_dns 6004 3096 6 4 1 0 48,43 
quic-23 7671 3956 20 4 1 0 48,43 
fuzz-2006 99986 53930 691 399 9 0 46,06 
dnscrypt-v2-doh 230431 132987 577 136 1 0 42,29 
skype_udp 459 278 5 3 1 0 39,43 
teredo 3150 1980 24 14 1 0 37,14 
quic_t50 8708 5664 12 4 1 0 34,96 
smbv1 1365 895 7 4 1 0 34,43 
diameter 2124 1488 6 4 1 0 29,94 
websocket 561 428 5 4 1 0 23,71 
steam 11516 10218 104 97 1 0 11,27 
kerberos 30139 29412 77 75 4 0 2,41 
encrypted_sni 2382 2382 3 3 1 0 0,00 
tls-esni-fuzzed 2382 2382 3 3 1 0 0,00 
4in6tunnel 2284 2284 4 4 1 0 0,00 
mysql-8 463 463 4 4 1 0 0,00 
ubntac2 1928 1928 8 8 1 0 0,00 
filtered 21595 21595 74 74 1 0 0,00 
dnscrypt-v1 321274 321274 608 564 2 0 0,00 
WebattackRCE 210131 210131 797 797 2 0 0,00 

 

 

Figure 13: Detected vs. Undetected Applications in Reduced Flow  
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4.3. Experiment-2: TCP-based Application Identification  

In the second experiment, we used the real captures from  Canadian Institute for 

Cybersecurity [82], namely the files in the dataset named “PCAP-01-12_0750-

0818”.  

 

There are 69 files located in this dataset; each containing a real-world data capture that 

contains data from a real DDoS attack along with different types of traffic. In the data, 

there are multiple protocols in a flow which makes our life harder. In table 7, the 

identification percentage comes from having multiple different protocols in a single 

flow.  

 

In order to see the effect of proposed method on TCP traffic, we extracted the TCP 

streams and used the extracted streams to send to the simulation. 

 

Following results are achieved: 

 

Table 6 Rates for Real-life Captures Using only TCP Streams 

! REDUCTION RATIO 97.88% 
! REDUCTION FACTOR 47.16 
! DETECTION RATE 95% 

 

 

Table 7 TCP-based reduction results 

FILE A B C 
SAT-01-12-2018_0750.pcap 2 2 100% 
SAT-01-12-2018_0751.pcap 3 3 100% 
SAT-01-12-2018_0752.pcap 3 3 100% 
SAT-01-12-2018_0753.pcap 4 3 75% 
SAT-01-12-2018_0754.pcap 4 4 100% 
SAT-01-12-2018_0755.pcap 4 4 100% 
SAT-01-12-2018_0756.pcap 4 4 100% 
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SAT-01-12-2018_0757.pcap 3 3 100% 
SAT-01-12-2018_0758.pcap 1 1 100% 
SAT-01-12-2018_0759.pcap 3 3 100% 
SAT-01-12-2018_0760.pcap 5 4 80% 
SAT-01-12-2018_0761.pcap 4 4 100% 
SAT-01-12-2018_0762.pcap 4 4 100% 
SAT-01-12-2018_0763.pcap 4 4 100% 
SAT-01-12-2018_0764.pcap 4 4 100% 
SAT-01-12-2018_0765.pcap 3 3 100% 
SAT-01-12-2018_0766.pcap 3 3 100% 
SAT-01-12-2018_0767.pcap 3 3 100% 
SAT-01-12-2018_0768.pcap 4 4 100% 
SAT-01-12-2018_0769.pcap 4 4 100% 
SAT-01-12-2018_0770.pcap 4 4 100% 
SAT-01-12-2018_0771.pcap 3 3 100% 
SAT-01-12-2018_0772.pcap 4 3 75% 
SAT-01-12-2018_0773.pcap 3 3 100% 
SAT-01-12-2018_0774.pcap 1 1 100% 
SAT-01-12-2018_0775.pcap 3 3 100% 
SAT-01-12-2018_0776.pcap 4 4 100% 
SAT-01-12-2018_0777.pcap 2 2 100% 
SAT-01-12-2018_0778.pcap 5 5 100% 
SAT-01-12-2018_0779.pcap 3 3 100% 
SAT-01-12-2018_0780.pcap 4 4 100% 
SAT-01-12-2018_0781.pcap 3 3 100% 
SAT-01-12-2018_0782.pcap 5 4 80% 
SAT-01-12-2018_0783.pcap 4 4 100% 
SAT-01-12-2018_0784.pcap 5 5 100% 
SAT-01-12-2018_0785.pcap 1 1 100% 
SAT-01-12-2018_0786.pcap 4 3 75% 
SAT-01-12-2018_0787.pcap 5 5 100% 
SAT-01-12-2018_0788.pcap 7 6 86% 
SAT-01-12-2018_0789.pcap 6 5 83% 
SAT-01-12-2018_0790.pcap 5 5 100% 
SAT-01-12-2018_0791.pcap 5 5 100% 
SAT-01-12-2018_0792.pcap 6 5 83% 
SAT-01-12-2018_0793.pcap 4 4 100% 
SAT-01-12-2018_0794.pcap 5 4 80% 
SAT-01-12-2018_0795.pcap 5 5 100% 
SAT-01-12-2018_0796.pcap 5 5 100% 
SAT-01-12-2018_0797.pcap 7 7 100% 
SAT-01-12-2018_0798.pcap 5 5 100% 
SAT-01-12-2018_0799.pcap 4 4 100% 
SAT-01-12-2018_0800.pcap 5 5 100% 
SAT-01-12-2018_0801.pcap 5 5 100% 
SAT-01-12-2018_0802.pcap 4 4 100% 
SAT-01-12-2018_0803.pcap 4 4 100% 
SAT-01-12-2018_0804.pcap 4 4 100% 
SAT-01-12-2018_0805.pcap 4 4 100% 
SAT-01-12-2018_0806.pcap 3 3 100% 
SAT-01-12-2018_0807.pcap 5 4 80% 
SAT-01-12-2018_0808.pcap 6 5 83% 
SAT-01-12-2018_0809.pcap 6 6 100% 
SAT-01-12-2018_0810.pcap 5 5 100% 
SAT-01-12-2018_0811.pcap 4 4 100% 
SAT-01-12-2018_0812.pcap 3 3 100% 
SAT-01-12-2018_0813.pcap 6 5 83% 
SAT-01-12-2018_0814.pcap 7 6 86% 
SAT-01-12-2018_0815.pcap 7 5 71% 
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SAT-01-12-2018_0816.pcap 11 8 73% 
SAT-01-12-2018_0817.pcap 33 31 94% 
SAT-01-12-2018_0818.pcap 19 17 89% 
A: #OF DETECTED PROTOCOLS IN TCP FLOW 

B: #OF DETECTED PROTOCOLS IN REDUCED FLOW 

C: DETECTION PERCENTAGE 

 

Table 8 TCP-based Detection Applications and Reduction Rates 

 

4.4. Experiment-3: Application Identification in full stream  

In the final experiment, we treated the streams as is, sent them directly to the switch 

including all TCP and UDP traffic. Following results are achieved: 

Table 9 Rates for Real-life Captures Using Full Streams 

! REDUCTION RATIO 84.73 % 
! REDUCTION FACTOR 6.5 
! DETECTION RATE 99.83 % 

 

Table 10 Application Identification in Full Stream 

APPNAME REDUCED 

BYTES 

ORIGINAL 

BYTES 

REDUCED 

PACKET 

ORIGINAL 

PACKETS 

REDUCTION 

PERCENTAGE 
AFP 75.888 142.848 136 256 46,88% 
Amazon 222.810 3.539.200 1.892 10.959 93,70% 
AmongUs 74.772 187.488 134 336 60,12% 
Ayiya 70.308 167.400 126 300 58,00% 
BitTorrent 264.492 566.928 474 1.016 53,35% 
BJNP 110.484 223.200 198 400 50,50% 
CAPWAP 110.484 225.432 198 404 50,99% 
CiscoVPN 90.636 174.456 166 318 48,05% 
Cloudflare 3.432 57.108 52 290 93,99% 
COAP 205.344 429.660 368 770 52,21% 

APPNAME REDUCED 

BYTES 

ORIGINAL 

BYTES 

REDUCED 

PACKET 

ORIGINAL 

PACKETS 

REDUCTION 

PERCENTAGE 
Amazon 49.814 3.358.944 752 9.755 98,52% 
CiscoVPN 240 360 4 6 33,33% 
Cloudflare 3.432 57.108 52 290 93,99% 
FTP_CONTROL 9.612 27.816 146 428 65,44% 
Google 556.515 42.745.086 7.630 124.991 98,70% 
HTTP 796.644 17.120.664 11.256 59.213 95,35% 
HTTP_Proxy 240 360 4 6 33,33% 
ICMP 532 1.024 6 12 48,05% 
Microsoft365 264 20.034 4 40 98,68% 
MsSQL-TDS 2.640 3.600 44 60 26,67% 
Playstation 240 360 4 6 33,33% 
RDP 480 600 8 10 20,00% 
SMBv23 8.700 11.868 144 196 26,69% 
SSH 253.900 7.116.484 3.404 46.886 96,43% 
Telnet 6.600 8.040 110 134 17,91% 
TLS 223.754 16.014.962 2.808 35.013 98,60% 
UbuntuONE 1.510 3.991.232 20 3.188 99,96% 
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Collectd 94.860 180.792 170 324 47,53% 
CPHA 149.544 305.784 268 548 51,09% 
DHCP 188.802 575.730 355 1.259 67,21% 
DHCPV6 6.178 238.728 42 1.624 97,41% 
DNS 1.285.798 1.528.164 11.150 12.354 15,86% 
Dropbox 118.296 232.128 212 416 49,04% 
EAQ 162.936 363.816 292 652 55,21% 
Facebook 78.980 83.836 804 848 5,79% 
FTP_CONTROL 9.736 27.940 148 430 65,15% 
Github 8.592 8.986 92 96 4,38% 
GMail 20.928 704.538 192 4.458 97,03% 
Google 2.274.505 44.542.510 23.970 142.071 94,89% 
GoogleServices 115.472 2.215.516 964 9.062 94,79% 
GTP 263.376 565.812 472 1.014 53,45% 
H323 159.588 351.540 286 630 54,60% 
HTTP 799.416 17.123.436 11.300 59.257 95,33% 
HTTP_Proxy 3.132 3.252 52 54 3,69% 
IAX 118.296 241.056 212 432 50,93% 
ICMP 380.064 6.251.658 4.052 48.536 93,92% 
ICMPV6 5.548 88.904 62 954 93,76% 
Instagram 74.948 77.950 484 512 3,85% 
IPsec 279.632 590.996 500 1.058 52,68% 
IRC 95.976 213.156 172 382 54,97% 
iSCSI 212.040 449.748 380 806 52,85% 
Kerberos 48.228 124.116 90 226 61,14% 
LDAP 94.860 249.984 170 448 62,05% 
LinkedIn 15.346 17.774 144 168 13,66% 
LISP 156.240 330.336 280 592 52,70% 
LLMNR 149.644 304.968 282 588 50,93% 
MDNS 213.722 678.891 416 2.023 68,52% 
Megaco 46.872 103.788 84 186 54,84% 
Memcached 8.052 15.864 18 32 49,24% 
Microsoft 76.694 784.104 640 2.493 90,22% 
Microsoft365 5.064 144.776 44 314 96,50% 
MsSQL-TDS 2.640 3.600 44 60 26,67% 
NetBIOS 134.656 300.524 248 582 55,19% 
NFS 111.600 243.288 200 436 54,13% 
NTP 54.684 112.716 98 202 51,49% 
OpenVPN 105.024 224.436 190 404 53,21% 
OSPF 21.368 880.742 228 9.307 97,57% 
Playstation 75.012 167.760 138 306 55,29% 
Radius 213.156 444.168 382 796 52,01% 
RDP 110.964 221.568 206 406 49,92% 
Reddit 9.332 10.292 88 96 9,33% 
RemoteScan 190.836 379.440 342 680 49,71% 
RTSP 45.756 100.440 82 180 54,44% 
RX 8.928.188 25.862.372 16.002 46.350 65,48% 
sFlow 131.688 280.116 236 502 52,99% 
SIP 245.320 512.044 446 924 52,09% 
SMBv1 1.458 16.524 6 68 91,18% 
SMBv23 9.192 12.360 152 204 25,63% 
SOCKS 64.092 141.096 122 260 54,58% 
SOMEIP 386.136 850.392 692 1.524 54,59% 
SSDP 169.968 230.160 418 766 26,15% 
SSH 254.024 7.116.608 3.406 46.888 96,43% 
Starcraft 90.396 196.416 162 352 53,98% 
Syslog 128.340 262.260 230 470 51,06% 
TeamViewer 116.064 247.752 208 444 53,15% 
Telnet 7.080 8.520 118 142 16,90% 



 

 69 

Teredo 107.136 234.360 192 420 54,29% 
TFTP 51.336 109.368 92 196 53,06% 
TINC 100.440 223.200 180 400 55,00% 
TLS 229.370 16.020.578 2.900 35.105 98,57% 
Twitter 12.500 12.828 132 136 2,56% 
UBNTAC2 106.020 233.244 190 418 54,55% 
UbuntuONE 7.114 3.997.352 80 3.252 99,82% 
VHUA 80.352 181.908 144 326 55,83% 
Viber 686.340 1.487.628 1.230 2.666 53,86% 
VMware 217.620 501.084 390 898 56,57% 
Wikipedia 24.352 26.832 280 296 9,24% 
WireGuard 112.716 255.564 202 458 55,90% 
Xbox 229.896 510.012 412 914 54,92% 
XDMCP 100.440 213.156 180 382 52,88% 
YouTube 14.960 15.360 92 96 2,60% 

 

4.5. Results and Discussion of the Experiments 

The experimental study on the packet captures showed us that 2-packet reduction of a 

flow is possible to identify a flow. 

The decrease in detection rate Table 4  is mostly caused by TLS encryption, which 

shows us that further study is needed to identify an encrypted flow. In addition to solve 

the problem coming through encrypted traffic, an ML-based approach would be 

implemented to succeed in the application identification of all flows. Based on the 

results from “Table 5 Fully Detected Protocols from the capture files”: 

• 125 out of 160 packet captures are correctly identified.  

• 16 out of 160 packet captures could not be identified. Normally, 160 out of 

160 packets would be identified correctly. 125 files identified correctly. 

• 16 not identified at all (0 identification). 

• 19 partially identified. 

• 16 non-identified protocols are completely encrypted protocols. 

• 125 identified protocols are mixed partially TLS and plain protocols. 

• 19 partially identified protocols are mixed TLS and plain protocols partially. 
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Detection Rate drops with the reduced flow in encrypted traffic. (i.e., as we reduce the 

flow, we also lose important flow information that is needed for packet identification, 

short flows). The reason for not identifying these packet captures is they are mostly 

encrypted protocols, which require more than 2 packets to identify. We’ll expand the 

experiments according to this.  

In Experiment 2, the results in Table 6 showed that it is possible to increase the 

detection rate while the reduction rate is also increased. This is due to the fact that 

there are only 17 protocols detected in TCP streams, as indicated in Table 8 most of 

them are not TLS-based protocols or can be identified without deep inspection of the 

payload. 

In Experiment 3, the results in  Table 9 indicated that if we include UDP streams, the 

accuracy even goes higher, but the reduction rate decreases. This behavior is expected 

since the number of detected protocols in  

Table 10 is 84, more than the number of applications detected in TCP streams, but the 

number of packets in UDP streams is lower than the number of packets in TCP streams. 

The decrease in reduction ratio is the result of the shorter flow size in UDP streams in 

the capture file.   
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CHAPTER 5  

CONCLUSIONS 

5.1. Main Conclusions 

The main conclusion of this thesis is that application layer data processing can be 

performed with PISA switches at the network layer. We do not always need complex 

techniques to inspect the packets in L7; a simple flow-based packet reduction can 

achieve significant accuracy to identify the flows and add application-level visibility 

over the network. Data-stream processing combined with switch-level applications 

helps us building strong networking applications, such as DDoS attack detection 

mechanism. In-band Network Telemetry is in the central position of a programmable 

switch that distinguishes and separates them from the traditional switches. The 

proposed method constructs a Network Processor with a specific task from each PISA-

stream processor pair. In other words, by using a single PISA switch and tens of stream 

processors with different features (DPI, NGFW, etc.) on different ports, our proposal 

constructs a big traffic exchange fabric with dynamically attached Network Processors 

of different types at a very low cost. 

 

The result of this study demonstrates that the proposed system reduces the traffic load 

of such systems by a factor of 5.5 to 47 times with acceptable application 

identification. Applying ML-based approaches would increase the success rate of the 

proposed system with a margin of throughput needed compared to the legacy systems. 
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In addition, real traffic scenarios indicate that the performance gain would reach up to 

a factor of 40 on average by using the statistics in [86]. 

 

The studies in the literature and our experimental studies demonstrated that PISA 

switches are the glue for the SDN-NFV couple, increasing the performance of such 

systems. One of the major problems of the NFV systems is the performance 

bottleneck; however, the proposed solution also solves this problem for many use 

cases.   

 

5.2. Future Studies 

Encrypted network traffic identification with P4 language is one of the main future 

studies for this thesis, which is a very important topic for network security. In-band 

Telemetry seems to be a good place to start this study, as it tells us about the 

characteristics of a flow on a packet level. In this kind of analysis, AI/ML methods can 

provide great help in defining the features of traffic.  

 

Another future area of interest could be Digital Twins (DT) in Telecommunication 

Networks. As PISA switches allow you to model the hardware in a software 

environment, it would straight-forward to build a DT of a telecom operator which 

needs to feed-forward the actual data and commands towards the active network.
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